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Human skin allows for an abundance of fine muscular move-
ments that form the ability to communicate in daily life, 
whether through shaping vocal sounds into recognizable 

speech or through forming facial expressions for nonverbal com-
munication1–3. Despite the importance of facial movements, much 
is still unknown about the quantifiable patterns of mechanical 
deformation that occur on the skin as a result of the contraction and 
relaxation of muscles. Precise measurements of soft tissue biokine-
matics, such as skin strain during facial deformations, can be used 
to computationally recognize distinct facial motions and, therefore, 
facilitate nonverbal communication for patients who lack the abil-
ity to speak or interact using traditional electronic communication 
interfaces.

Many neuromuscular disorders, such as amyotrophic lateral 
sclerosis (ALS), are caused by peripheral nerve degeneration, 
interruptions in the signalling and response pathways between 
motor neurons and muscles, and eventual muscular atrophy4. 
Although these diseases have low prevalence and incidence, they 
induce severe disability and high fatality rates; 50% of patients 
with ALS die within 15–20 months after diagnosis5. Such disor-
ders often manifest themselves through physiological changes in 
a person’s hands, feet and other body parts, including gradual loss 
of their ability to exercise fine motor skills and to vocalize intel-
ligible speech6. As a result, patients with ALS or related disorders 
experience barriers to tasks that require finger dexterity and sus-
tained speech, but often retain the ability to form facial motions7. 
Predictable methods for continuously tracking dynamic skin strain 
on the face can therefore enable new forms of communication for 
individuals with such disorders.

At present, methods for in  vivo characterization of facial 
deformations often involve electromyography8,9 or camera track-
ing10–17. Although these systems provide valuable insights into the  

characterization of facial motions, capturing such measurements 
typically results in cumbersome computational load or requires the 
use of rigid, bulky structures with highly visible interfaces to soft 
skin, presenting a difficulty for continuous use in daily life, espe-
cially for individuals with neuromuscular disorders (Supplementary 
Table 1). As such, present technologies are often unsuitable for 
continuous, portable monitoring or for use on highly curvilinear 
regions of the body, such as the face. An alternative strategy involves 
the use of thin film piezoelectric materials, such as lead zirconate 
titanate (PZT)18–20, BaTiO3 (ref. 21) and zinc oxide (ZnO)22, or fibre 
forms of the copolymer of polyvinylidene fluoride with trifluoro-
ethylene23,24, to convert changes in soft tissue strain to measurable 
changes in electrical voltage and current. Such piezoelectric thin 
film devices have been increasingly explored for biomedical sen-
sors, transducers and energy harvesters25,26 because they can be tai-
lored to offer (1) high dynamic sensitivity across a wide pressure 
regime (0–100 kPa), (2) simplicity in device structure, (3) reliability 
and (4) stability under cyclic loading conditions18,27,28. However, a 
widely deployable system for real-time detection of facial motions 
would further necessitate the use of low-cost materials, easily manu-
facturable processes, and a seamless pipeline for fabrication, testing 
and validation.

Here we introduce a set of materials, device designs, fabrication 
steps, theoretical calculations, simulations and validation protocols 
that realize robust, mechanically adaptive, predictable and visu-
ally invisible (Supplementary Video 1) in vivo monitoring of spa-
tiotemporal epidermal strains as well as decoding of distinct facial 
deformation signatures through the use of conformable devices 
comprising aluminium nitride (AlN) piezoelectric thin films on 
compliant polydimethylsiloxane (PDMS) substrates. The use of 
a substrate with an elastic modulus that is comparable to that of 
the human epidermis enables soft reversible lamination of the  
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conformable facial code extrapolation sensor (cFaCES) onto any 
area of skin, permitting rapid, repeatable measurements of skin 
strain during facial motions without causing any inflammation and/
or allergic reactions while remaining stable across a range of tem-
peratures and humidities on the human skin18,29–32 (Supplementary 
Fig. 1). We further present a methodology that enables voltage–
strain correlation in mechanically adaptive, piezoelectric devices 
and informs their placement by quantitative study of dynamic soft 
tissue biokinematics using stereophotogrammetry (PG) and subse-
quent three-dimensional digital image correlation (3D-DIC). This 
methodology generates accurate, repeatable spatiotemporal maps of 
full-field facial skin strains and device-on-skin strains during facial 
movements. Comprehensive theoretical and in  vitro experimen-
tal studies established that these systems can provide accurate and 
reproducible measurements of strain during compression, stretch-
ing and bending in quasistatic regimes. Similar characterization of 
the sensor on a mock skin set-up suggests enhanced sensor sensitiv-
ity when coupled with soft, elastomeric targets. Preliminary in vivo 
experiments on healthy individuals and patients with ALS coupled 
with further theoretical studies and 3D-DIC assessment demon-
strate that the predictability, reproducibility and sensitivity of skin 
strain measurements using cFaCES enable real-time decoding 
(RTD) and classification of an individual’s facial motions, poten-
tially enabling an alternative method of nonverbal communication 
for individuals with neuromuscular disorders, such as ALS.

Sensor development
Figure 1a,b provides images and schematics of the cFaCES. 
Fabrication of the cFaCES (Supplementary Fig. 2) followed by an 
electrical anodization process (Supplementary Fig. 3) achieves the 
sensor’s conformable structure, which yields seamless integration 
with facial skin (Supplementary Fig. 4). The ultrathin architecture 
of the active piezoelectric elements, along with the serpentine metal 
electrodes that establish their electrical connections, result in low 
elastic modulus, conformable structures when supported by a thin 
elastomer (PDMS; thickness, 40 μm) substrate. The lateral configu-
ration of the cFaCES consists of an array of AlN thin films, which 
demonstrate anisotropic growth (0002) of wurtzite crystal structure 
(Supplementary Fig. 5) patterned in circular shapes, enabling local-
ized spatiotemporal measurements of strain without directional 
bias. The circular structures are capacitor-type elements, each of 
which incorporates a layer of AlN (thickness, 1.5 μm; diameter, 
0.48 cm) sandwiched between two molybdenum (Mo) electrodes 
(200 nm) and encapsulated with a layer of silicon dioxide (SiO2; 
thickness, 1 μm). cFaCES has a simplified structure—that is, a 2 × 2 
spatial array of piezoelectric elements—to reduce the amount of 
data processing that is required during RTD in an effort to push the 
boundary of the decoding accuracy with lower cost and lower com-
putational load (Supplementary Table 1). Further fabrication details 
are provided in the Methods. Although any piezoelectric material 
could be incorporated in a cFaCES as the active layer without giv-
ing up functionality, the specific use of AlN fabricated in a 200-mm 
wafer process results in a low-cost (US$10 per cFaCES) disposable 
device (Supplementary Fig. 6a). The sensor achieves a response 
time (5 ms) that is fast enough to track the changes in muscle 
motions, which occur on 10 ms timescales (Supplementary Fig. 6b).  
Furthermore, the complementary metal–oxide–semiconductor 
(CMOS)-compatible nature33–35 of the AlN piezoelectric layer can 
enable mass manufacturability, while the lead-free property of the 
device materials can make the clinical transition much smoother, 
when compared to a device with lead-based piezoelectrics, such as 
PZT, especially in countries in which lead-based devices are being 
actively phased out of production36,37. Owing to the minimal thick-
ness of all of the component layers38,39, the resulting device can be 
applied conformally and securely to the skin with the use of a thin 
3M Tegaderm medical tape (thickness, 40 μm) with an adhesion 

force of ~1.5 N and adhesion strength of ~60 N m−1 (Supplementary 
Fig. 6c), and is stable over a wide temperature range (25–65 °C; 
Supplementary Fig. 6d). In  vitro studies using human epidermal 
keratinocytes demonstrated the biocompatibility of the device. 
Particularly, cell-viability studies revealed no evidence of cell toxic-
ity and the cell culturing process did not alter the surface properties 
of the sensor (Supplementary Fig. 7).

Biokinematic assessment of dynamically deforming soft 
tissue
The key to achieving highly predictable operation of the aforemen-
tioned localized sensor in  vivo requires accurate voltage–strain 
correlation for any sensor placement location, and is realized by 
reliable, non-contact full-field spatiotemporal measurements of sur-
face strains with and without cFaCES laminated onto the epidermal 
region of interest. Figure 1c provides a schematic of the custom-built 
system for PG and 3D-DIC for measuring the full-field spatiotem-
poral facial skin strain. When an object, such as the human face, is 
positioned in view of a set of cameras—such that each pair of two 
adjacent cameras has an overlapping field of view of the object—
the cameras can reliably capture 12-bit-resolution images of the 
object’s movement at a rate of 6 frames per  second. If the object 
is speckled with a random pattern of dots (Supplementary Fig. 8) 
and then undergoes deformation during this image capture, sub-
sequent multicamera 3D-DIC using MultiDIC40,41 can accurately 
reconstruct the surface of the object in 3D space and track the 
strain field across that surface during movements. Sets of images 
collected from both a cylindrically shaped calibration object and a 
flat chequerboard distortion-correction object (Supplementary Fig. 
9) were utilized to derive the intrinsic and extrinsic camera param-
eters (that is, focal lengths, principal point coordinates, radial and 
tangential distortion parameters, and skew parameters, position 
and orientation of the camera with respect to the global coordinate 
system) using both the direct linear transformation and bundle 
adjustment methods40. The determined direct linear transformation 
parameters and bundle adjustment parameters were then used to 
map two-dimensional (2D) image points of the calibration object 
into 3D space and calculate the reconstruction errors—which result 
from a variety of sources, such as image quality, focus and light-
ing. The presented set-up consistently produces root-mean-square 
(r.m.s.) reconstruction errors of approximately 100 μm, which char-
acterizes the calibration of the set-up (Supplementary Figs. 10 and 
11 and Supplementary Note 1a).

The 3D-DIC process includes analysis of pairwise images to 
detect matching image points and calculate their correlation coef-
ficient, which is a parameter that describes the degree of ‘matching’ 
of the speckles on the object of interest as seen from two adja-
cent cameras (spatially) and as they move over time (temporally; 
Supplementary Note 1b). The calculation of correlation coefficients 
is the main result of 2D-DIC, and is computed using NCorr42,43, 
the methodology of which defines a correlation cost function for 
which a lower degree of matching equates to a higher correlation 
coefficient. After the correlation process, 3D reconstruction fol-
lowed by strain calculation results in a spatiotemporal full-field 
measurement of strain across the surface of the object of interest. 
Each pair of cameras produces a triangular mesh created from the 
3D point cloud that is resolved from the 3D reconstruction of 2D 
image points (Supplementary Note 1c). The full-field displace-
ments, deformations and strains are then calculated from the tem-
poral changes in the 3D coordinates of the triangular mesh from 
each pair using a variation of the triangular Cosserat point element 
method40,44,45 (Supplementary Note 1d). The eigendecomposition of 
the local Lagrangian strain tensor provides principal strain direc-
tions and magnitudes on each local surface element comprising 
the triangular mesh (Supplementary Note 1d). Throughout this 
paper, we follow the convention that the first principal strain is the 
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minimal in-plane strain; the second principal strain is the maximal 
in-plane strain occurring in an orthogonal direction; and the third 
principal strain—or out-of-plane strain—is immeasurable. Strain 
data gathered during DIC trials show the in-plane strain occurring 
on the top surface of the object of study. Control null-strain tests 
(Supplementary Fig. 12) give representative errors that result from 
the DIC set-up, data collection procedure and effect of analysing 
real human skin, and allow for reliable and theoretically predict-
able results for tracking the strain of facial skin and of the sensor 
laminated onto facial skin. Figure 1d shows a representative spa-
tial map of the strain field at the peak strain time point during a 
human participant’s right-cheek twitch motion. First (minimal) and 

second (maximal) principal surface strains are shown for a healthy 
individual performing the motion without (left) and with (right) a 
cFaCES laminated onto their cheek. Together with cFaCES electri-
cal measurement when laminated onto different participants and in 
various locations of the face (Fig. 1e), 3D-DIC optical measurement 
of strain can be analysed using theoretical modelling to achieve pre-
dictable and verifiable strain-to-voltage correlation for the cFaCES 
devices. The 3D-DIC methodology, which is implemented only 
once during an initial calibration period for a new user, enables 
complex preanalysis of the human epidermis to be conducted, 
which can then translate to smarter device design and informed 
location selection for device placement onto the skin, so as to  

SiO2, 1 µm
Mo, 200 nm
AlN, 1.5 µm

PDMS, 40 µm
PI, 4 µm
Mo, 200 nm

32°

15

10

5

0

–5

–10

–15

–4
0
4

0

0.7

a

0

1.6

V 
(m

V)
ε 

(%
)

ε 
(%

)

Time (s)
0 5

ε (%)

1

2
345

6

Camera

cFaCES

Speckle
pattern

Lights

cFaCES3D-DIC

TM&S RTD

cFaCES

hν

hν

Without cFaCES

With cFaCES

3D-DIC

e13, e33

e13, e33

εw/o

εw V V

Speckle

Speckle

No speckle

Daily use

Step 3Step 1

One-time initial new user calibration

Step 2

Strain–voltage correlation
using analytical calculations and 

FEM

Optical
measurement

of strain

Electrical
measurement

of strain

Informs sensor placement
location on face

Signal processing,
detection and

motion classification

b c

d e f

Fig. 1 | The system overview accompanying cFaCeS. cFaCES is a system that involves measurements by (1) a conformable sensor for the real-time detection 
of facial motions through electrical responses to localized strains and (2) a non-contact PG + 3D-DIC set-up for determining full-field mechanical strains 
on the face using multicamera optical imaging. a, The conformable sensor laminated onto a curved glass cylinder. Scale bar, 5 mm. Insets: the edge of the 
AlN sensing element and its top and bottom Mo serpentine electrodes (top right); and the set of eight serpentine electrodes from four sensing elements 
connecting to Al bonding pads (bottom right). Scale bar, 1 mm (applies to both insets). b, Exploded view of a cFaCES, including each layer that encapsulates 
the sensing elements (bottom right inset). Scale bar, 5 mm. c, The cFaCES (white dashed box) laminated onto various participants in different locations of 
the face, such as on the cheek and temple. Scale bars, 5 cm. d, Schematic of the PG + 3D-DIC set-up showing the concept of 3D reconstruction of the face 
using an array of cameras with overlapping fields of view. Random speckling of the face (bottom left) is required to enable image point matching, resulting 
in reliable 3D reconstruction and subsequent calculation of skin strain that occurs during epidermal deformations. e, Skin strain and sensor voltage output 
were analysed while participants performed facial motions, such as right cheek twitch. The images on the left show strain maps as an example of the results 
from 3D-DIC trials of a human participant with the sensor (left) and without the sensor (right), showing minimal principal strain (top) and maximal principal 
strain (bottom). The solid boxes in the right two images indicate the location of the cFaCES; the solid circles indicate its four active elements; and the dashed 
box indicates the Tegaderm tape. The black circle in the left two images indicates the area of the skin on top of which the cFaCES element of interest was 
located during DIC trials with the sensor laminated on the face. The strain scale (%) is given on the right of the strain maps. The three graphs on the right 
show minimal principal strain (top, blue) and maximal principal strain (middle, red) measured on the top layer of the cFaCES (adhered to skin with Tegaderm 
tape) using 3D-DIC, and the resultant voltage output (bottom, black) from one (red circle) of the four sensor elements. For each period of 5 s, the averaged 
strain across the DIC-generated triangles (n = 21) corresponding to the sensing element from which voltage is measured is represented as a solid line, and the 
shaded band indicates s.d. In all of the DIC-generated images presented in this paper, the eyes of the participants were blocked with black boxes to maintain 
privacy. Scale bars, 5 cm. f, Flow chart of the key elements of the system. The system, after a one-time initial calibration period for a new user, can be used as 
a daily nonverbal communication tool without further calibration. Step 1: the patient’s bare facial skin was speckled and optical (hv) measurement of strain 
ε without cFaCES (εw/o) was conducted while the patient formed various natural facial motions to inform later placement of the cFaCES on the facial skin. 
This step helped to maximize distinguishability between distinct motions. Step 2: after laminating the cFaCES onto the patient’s cheek or temple, speckling 
was applied to the facial skin and optical (hv) measurement of strain ε with cFaCES (εw) was conducted simultaneously with electrical measurement of the 
voltage output (V) of the cFaCES, which occurs through the e13 and e33 modes of piezoelectricity. The two methods of strain measurement are connected 
by bimodal (analytical calculations and FEM) theoretical modelling and simulation (TM&S) to achieve voltage–strain correlation. This helped to achieve 
predictable RTD performance in vivo. Step 3: the cFaCES was laminated onto the face, as informed by the analysis of contour maps generated using 3D-DIC 
in step 1, and the piezoelectrically generated voltage waveforms underwent signal processing, detection and motion classification.
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maximize decodability from minimal sensing elements and data 
processing (Supplementary Fig. 1f).

Mechanical characterization and theoretical modelling
Measurements on controlled, uniaxial buckling, tensile (stretch-
ing) and compressive stages with an Instron (MicroTester 5948) 
machine (Fig. 2a) revealed that the cFaCES has quasistatic mechani-
cal properties as a bare sensor in addition to when coupled with 
mock skin with a thickness of 2 mm (Dragon Skin, Smooth-On), so 
as to simulate in vivo behaviour when laminated onto human skin. 
Figure 2 displays the results of uniaxial buckling and stretching of a 
cFaCES laminated onto a mock skin. The neutral mechanical plane 
(NMP) of the cFaCES is located within 110 nm of the midplane of 
the piezoelectric active layer (Fig. 2b and Supplementary Note 2). 
Including the use of Tegaderm tape for application onto human 
skin shifts the NMP negligibly, maintaining it within the afore-
mentioned range (Supplementary Fig. 13). Cyclic tests of cFaCES 
buckling with buckling centreline in the middle of the piezoelectric 
array and for buckling distances up to 8 mm (radius of curvature 
(ROC) = 1 mm) show negligible (<200 μV) peak-to-peak voltage 
outputs (Supplementary Fig. 13d). For buckling distances of 2 mm 
of the bare sensor (ROC = 3 mm) with the buckling centreline 
through two of the piezoelectric elements, the maximum strain 
experienced by the cFaCES piezoelectric element during in  vitro 
trials was only 0.0185%, resulting in maximum voltages of ~200 μV 
(Supplementary Fig. 14). Given that the maximum strain allowable 
on wurtzite phase AlN is ~0.09% (ref. 46), the minimum ROC—for 
buckling with centreline through two of the piezoelectric elements—
that the cFaCES can support is 834 μm (Supplementary Note 2). 
This property of the cFaCES fixes its steady-state voltage output to 
~0 V regardless of the initial curvature of the object on which it is 
placed, which is critical for a device that can be used predictably 
by a wide variety of individuals. The strain distributions and volt-
age outputs as predicted by theoretical calculations quantitatively 
characterize the nature of deformations that occur on the cFaCES as 
a bare sensor when buckled (Supplementary Fig. 14a) or stretched 
(Supplementary Fig. 14b) and when coupled with a mock skin and 
the resultant structure is buckled (Fig. 2d) or stretched (Fig. 2e). 
For cyclic compression, similar studies were conducted for the sen-
sor on mock skin with and without Tegaderm tape (Supplementary 
Fig. 15a,b) as well as for the bare sensor (Supplementary Fig. 15c). 
The voltage outputs of the cFaCES as a result of the aforementioned 
cyclic deformation conditions at a variety of amplitudes are dis-
played in these figures, revealing that they are similar to predictions 
from two theoretical modalities—finite element model (FEM) sim-
ulations and analytical calculations.

For development of the voltage–strain correlation system, 
mechanical behaviours and voltages determined experimentally by 
cyclic, controlled deformation patterns of buckling, stretching and 

compression of the cFaCES, whether bare or coupled with a layer 
of mock skin, were predicted using an analytical model. Buckling 
behaviour is inherently nonlinear, and the partial differential equa-
tion governing the vibrations of post-buckled piezoelectric beams47–52  
is similar to the equations of buckling for a unimorph beam48. 
Derived by combining those of a buckled beam53 and a piezoelectric 
energy harvesting bimorph54,55, the governing equation for buckling 
of piezoelectric beams is as follows:

m ∂2w
∂t2 þ c ∂w∂t þ EI ∂

4w
∂x4 þ

P � EA
2L

R L
0

∂w
∂x

� 2
dx

h i
∂2w
∂x2 þ α dδ xð Þ

dx � dδ x�Lð Þ
dx

h i
V tð Þ ¼ 0

ð1Þ

where m is the total mass per unit length of the beam, w (which is 
a function of x and t) is deflection along the z axis, c is the damping 
coefficient, EI is the equivalent bending stiffness of the composite 
beam (with E as the Young’s modulus and I as the moment of iner-
tia), P is the axial load applied by the material testing system, EA 
is the equivalent axial stiffness of the beam (with E as the Young’s 
modulus and A as the cross-sectional area), L is the length of the 
beam, α is the piezoelectric coupling coefficient, δ(x) is the Dirac 
delta function and V(t) is the voltage across the piezoelectric ele-
ment. If the width of the beam is noted by b the thickness of the 
substrate by ts the thickness of the piezoelectric layer by tp and the 
transverse piezoelectric coefficient by e13, the piezoelectric coupling 
coefficient is then α ¼ 2be13

tsþtp
2

I
.

The continuous equations of motion are discretized using the 
assumed-mode method, and the buckling mode shapes are taken 
to be the same as the vibration mode shapes of a pinned–pinned 
beam. The axial force applied by the Instron is larger than the first 
critical load but not the critical load of the higher modes. We there-
fore consider only the fundamental mode shape of buckling53,56,57. 
The fundamental mode shape of the simply supported beam is 
ϕ xð Þ ¼ Asin πx

L

� �

I
 and the deflection of the beam can be written as 

a function separable in space and time, w x; tð Þ ¼ ϕ xð ÞT tð Þ
I

, where 
A is an arbitrary constant and the function T(t) governs the time 
dependence of beam deflection. The differential equations govern-
ing the vibrations of the first mode of coupling are:

M₠T þ c _T þ K � pð ÞT þ NT3 þ βV tð Þ ¼ 0

C0 _V þ V
R ¼ �β _T

(
ð2Þ

where the modal mass is w x; tð Þ ¼ ϕ xð ÞT tð Þ
I

 (the mass-normalized 
mode shapes are used), the linear stiffness coefficient is 
K ¼ EI

RL

0
ϕ 4ð Þϕdx ¼ A2EI π4

2L3

I

, the damping of the beam is 
characterized by c which is related to the damping ratio as 
K ¼ EI

RL

0
ϕ 4ð Þϕdx ¼ A2EI π4

2L3

I

. The reduction of the stiffness  

Fig. 2 | In vitro mechanical characterization of the cFaCeS on a mock skin. Voltage output resulting from uniaxial buckling and stretching of the cFaCES 
placed onto a mock skin set-up served as a first-order controlled approximation of the expected behaviour of the sensor on human skin. a, An optical 
photograph of the test set-up on the Instron machine shows the clamping of the cFaCES system, whether bare or on a mock skin. From the unperturbed 
state, one end of the system was either pushed closer, resulting in buckling behaviour, or pulled away, resulting in tensile stretching behaviour. The 
electrical output generated by the four sensing elements of the sensor is carried by an anisotropic conductive film cable that is connected to a printed 
circuit board (PCB), which is then connected by a shielded coaxial cable to the DAQ system. b, The NMP, yneutral (black dashed line), of a cFaCES is located 
in the middle of the piezoelectric layer, as shown in the cross-section drawing (green dashed box). c, The FEM simulates a single sensing element (red 
dashed box) as a current source Ip in parallel with a capacitor Cp = 807 pF, which mimics the piezoelectric charge-generating behaviour. To accurately 
predict the voltage values measured from the sensor, the DAQ system (blue dashed box) was included in the model as a parallel combination of a resistor 
and capacitor (Rs = 1MΩ || Cs = 265 pF) connected to the two-wire output of the piezoelectric element. d,e, Voltage outputs from one sensing element as 
observed experimentally and predicted by analytical models and FEMs, in addition to strain fields predicted by the FEM, are shown for the case of buckling 
(BMS) (d) and stretching (SMS) (e) motions for the sensor-on-mock-skin system. The time scale is the same for all of the graphs in d and e. Deformation 
and strain fields are shown in the deformed configuration for the highest axial displacements for buckling (10 mm) and stretching (3.5 mm). The outline of 
the undeformed cFaCES–mock-skin system is shown by the thin grey wireframe in each strain map. The deformation (mm) and strain (%) scale for each 
strain map is given on the right. Scale bars, 2 cm.
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coefficient due to the axial force is p ¼ �P
RL

0

₠ϕϕdx ¼ AP2 π2
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, the 
nonlinear coefficient is N ¼ � EA

2L
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, the 
coupling coefficient is β ¼ α½ϕð0Þ � ϕðLÞ ¼ �2αA π

L
I

 and the total 
capacitance of the piezoelectric layer is β ¼ α½ϕð0Þ � ϕðLÞ ¼ �2αA π

L
I

.
If the axial force is larger than the critical force, which leads 

to buckling, p will be larger than K and, according to Lyapunov  

stability theory, in that situation, the zero deflection equilibrium 
becomes unstable. However, this condition creates two new static 

equilibrium points located at T ¼ ±
ffiffiffiffiffiffiffi
p�K
N

q

I
. The deflection of the 

beam results in the decrease in its length. If the uniform axial 
deformation is neglected compared with the geometric effects, the 
shortening of the beam is T ¼ ±

ffiffiffiffiffiffiffi
p�K
N

q

I
. The governing differential 
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equations in equation (1) are valid when the axial load is controlled 
or known; however, in some of the tests, the axial displacement was 
controlled instead, for which a modified governing equation was 
used (Supplementary Note 3).

As another method of theoretical prediction, full 3D multi-
physics modelling using COMSOL software (the Solid Mechanics, 
Electrostatics and Electrical Circuits modules) was used to generate 
a FEM of the multilayer sensor in greater detail (Methods). Both 
analytical modelling and FEMs predict the mechanical behaviour 
and voltage output of the cFaCES accurately (Fig. 2). The accurate 
prediction of the analytical model47–52 stems from its accounting of 
the geometric nonlinearities of the post-buckled beam, indicating 
that the single-mode model is an accurate approximation of the 
piezoelectric sensor even in a fully nonlinear testing situation. For 
example, during certain motions, such as pursed lips (PL), the cheek 
skin may pucker inwards due to stretching of skin over an internal 
mouth cavity. For such cases, the strain maps in Fig. 2e are represen-
tative, demonstrating that, during stretching on mock skin, some 
low-amplitude concave buckling occurs, which results in voltage 
waveforms that are different from that of convex buckling (Fig. 2d).

The extent of nonlinearities that result from axial loading of the 
sample scale with the amplitude of mechanical excitation. The bare 
sensor buckles under axial loads of less than ~1 N (Supplementary 
Fig. 14a and Supplementary Note 4). However, laminating the 
cFaCES onto a sample of mock skin (thickness, 2 mm) increases 
the critical buckling load of the system under study and, therefore, 
changes the voltage response of the cFaCES (Fig. 2d). At low lev-
els of excitation, the beam motion involves an impulse both at the 
moment of application of the buckling load as well as at its removal 
but, at larger values of axial deformation, the impulse at the point 
of force removal disappears. Uniaxial stretching deformations cause 
notable axial tension in the sample. As a result, the mock skin slides 
out of the Instron clamping jaws and leads to buckling behaviour 
in addition to tensile behaviour. To simulate the effects of sliding 
the specimen out of the jaws, an axial constant force was incorpo-
rated into the FEM simulation, an approach based on refs. 48,53. In 
post-buckled vibrations of the beams, the effect of axial displace-
ment (Supplementary equation (5) in Supplementary Note 3) 
is similar to the effect of excitations in the form of an axial force 
(equation (1)). Identifying the amount of the axial pull out of the 
specimen by identifying the equivalent axial force in the govern-
ing equations therefore enables accurate modelling of mechanical 
behaviour of the bare cFaCES in the stretching tests (Supplementary 
Fig. 14b) in a manner that is similar to that for the buckling tests 
(Supplementary Note 4). Axial force amplitudes for stretching of the 
cFaCES–mock-skin system are higher than that for the bare sen-
sor. The post-buckled, bi-stable behaviour is therefore clearly visible 

in the results of this experiment (Fig. 2e). The strain distributions 
along the cFaCES–mock-skin system for stretching and bending 
cases are shown in Fig. 2d,e, respectively. Compression forces on the 
cFaCES and cFaCES–mock-skin system were similarly modelled 
(Supplementary Note 5 and Supplementary Fig. 16) and confirmed 
experimentally. These findings establish that the cFaCES is a robust, 
versatile tool for characterizing mechanical deformations on soft, 
elastomeric substrates in vitro.

In vivo characterization during facial deformations
Subsequent in vivo study of soft-tissue biokinematics using PG and 
3D-DIC completes the system presented herein, as the resultant 
spatiotemporal strain readings can be used to interpret sensor read-
ings from the cFaCES when laminated onto facial skin during facial 
deformations. We studied the epidermal strain signatures resulting 
from 16 different facial deformations, and we compared the effect 
of these deformations on different regions of the face, such as cheek 
and temple, as well as the resultant strain and voltage output on the 
cFaCES when laminated onto those regions.

Initial 3D-DIC tests characterize the properties of the partici-
pants’ facial skin. An outline of the protocol for in  vivo 3D-DIC 
experiments is provided in the Methods. Experiments were first 
conducted on the facial skin without the cFaCES laminated, result-
ing in quantitative measurement of full-field skin strains during 
various types of natural deformations (Supplementary Videos 2–4). 
The resulting minimal and maximal principal strain maps for rep-
resentative motions are shown in Fig. 3a,c,e,g. Strain fields between 
different participants for the same motion show roughly similar 
areas of maximum strain, with differences in magnitude or specific 
spatiotemporal signatures of strain that could be attributed to par-
ticipant age18, deviations in motion execution across different indi-
viduals and potential muscular atrophy in patients with ALS. All 
procedures for the tests in the healthy individuals and the patients 
with ALS were in accordance with the experimental protocol 
approved by the Committee on the Use of Humans as Experimental 
Subjects in Massachusetts Institute of Technology (COUHES, no. 
1809531633), and the participants gave informed consent.

The results of further 3D-DIC experiments in which a cFaCES 
was laminated onto human facial skin characterized the behaviour 
of the cFaCES in  vivo (Supplementary Videos 5–7). Laminating 
the cFaCES onto the skin, as shown in Fig. 3b,d,f,h, decreases the 
magnitude of the observed strain in the sensor area, which results 
from the sensor’s absorption of the mechanical energy gener-
ated by muscle movements that underlie skin deformation. Given 
that mechanically coupling different materials results in different 
equilibrium and compatibility constraints in the composite skin–
cFaCES system, there results an altered stress–strain distribution 

Fig. 3 | In vivo mechanical characterization of the cFaCeS on facial skin of healthy individuals and patients with ALS. a–h, Using 3D-DIC, evaluation of 
facial skin and the top surface of the cFaCES when laminated onto facial skin in vivo characterizes the mechanical interactions between the cFaCES and the 
facial skin. Analyses for the following two motions are shown: twitch medium magnitude (TM) and eyebrow-down medium magnitude (EDM). a,c,e,g, All 
of the results for skin strain without the sensor on the face (no sensor (NS)). b,d,f,h, All of the results for skin strain with the sensor on the face (sensor 
(S)). a–d, Results from a healthy individual. e–h, Results from a patient with ALS. The images are strain maps in which strain values, which were calculated 
using DIC algorithms run on two pairs of cameras, were overlaid onto the raw images captured by PG. The strain maps shown are associated with the 
frame in which peak strain occurred in the area of the sensor or in the area of the skin directly underneath the location in which the sensor was placed. 
The strain scale (%) for all of the strain maps is given in the top left corner. The solid boxes indicate the location of the cFaCES; the solid circles indicate 
its four active elements; and the dashed box indicates the Tegaderm tape. The red circles indicate the sensing element from which voltage data and strain 
data were collected. For a–h, the images on the left and the blue graphs (left, strain, ε (%); right, strain rate ∂ϵ

∂t
 (percentage per s)) display the results for 

minimal principal strain; and the images on the right and the red graphs show the same, but for maximal principal strain, as measured on the top surface 
of the Tegaderm tape layer, which secured the cFaCES to the skin. For each period of 5 s, averaged strain across the DIC-generated triangles (n ≥ 9), 
corresponding to the sensing element from which voltage is measured, is represented as a solid line, and the shaded band indicates s.d. The peak strain is 
denoted in each of the strain graphs by the dashed black line. The black graphs on the right (voltage (top) and voltage rate (bottom)) display the output of 
the denoted sensing element. Representative strain maps and graphs for all 16 motions are shown for each patient in Supplementary Figs. 17–28. Results 
of five repeats of the same motion for each individual and each motion are provided in Supplementary Figs. 29–122. Strain maps and graphs include only 
triangles for which the correlation coefficient was lower than 0.4. The time scale is the same for all of the graphs. Scale bars, 5 cm.
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throughout the materials and on the material interfaces. Detailed 
calculations and explanations of this phenomenon are discussed 
in Supplementary Note 6. Representative results for healthy indi-
viduals and patients with ALS for all motions, with and without 
cFaCES laminated onto the face, are shown in Supplementary 
Figs. 17–28. An extensive study on the repeatability of strain field 
measurements for the same movement and the same participant 
for testing situations with and without cFaCES lamination is 
demonstrated in Supplementary Figs. 29–122; small differences 
in magnitude or strain waveform shape can also be attributed to 

slight deviations in an individual participant’s repeated motion 
execution over multiple trials.

Modelling of device behaviour during facial deformations
As the piezoelectric elements transform mechanical energy into 
electrical energy, the observed experimental voltages in 3D-DIC 
trials can be used to predict the strains expected from the DIC 
measurements of the top surface deformation of the sensor when 
laminated onto the skin. Assuming that the cFaCES sensing element 
area is small enough that the strain is constant over the area of each 
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sensor element, we can write the following analytical expression for 
the sensor voltage:

C
dV
dt

þ V
R
¼ e31A

d
dt

ϵ1 þ ϵ2ð Þ ð3Þ

where C is the capacitance of the sensor, R is the shunt resistance 
of the data acquisition (DAQ) system, e31 is the effective piezoelec-
tric stress coefficient, A is the area of the piezoelectric element, 
ε1 and ε2 are the strains in the two principal strain directions and 
ε1 + ε2 represents the trace of the eigendecomposed strain ten-
sor where out-of-plane strain, ε3, is immeasurable and assumed to 
be negligible for this calculation58. The facial gestures do involve 
shear strains, evident from the appearance of wrinkle lines during 
some deformations. The buckling showcased by the wrinkles indi-
cates compressive strain normal to the wrinkles and tensile strains 
along the wrinkles. A combination of compressive and tensile shear 
strains creates notable shear strains in the non-principal directions. 
The shear strains are only zero if the coordinate axes are chosen 
along the strain directions. However, the principal directions could 
change in time and we therefore derive our equations along a global 
coordinate system. Shear strains do not affect the generated voltage 
(equation (3)) as the coupling coefficient between the shear strain 
in the xy plane and electrical displacement in the z axis is zero. The 
non-zero coupling coefficient associated with shear deformation 
is d15, which involves shear deformation along the xz plane and 
requires electrodes on the lateral surfaces (normal to the x axis).

The voltage output of the cFaCES, which has electrodes in the 
z direction, correlates with the sum of the planar normal strains, 
or the surface strain tensor trace (εs), which represents the 
3D-DIC-measured value of ε1 + ε2 from equation (3). To estimate εs 
from the cFaCES-generated voltage, a transfer function was deter-
mined. To include all of the sensor layers and improve the accuracy 
of this model, the full FEM discussed earlier was used instead of the 
approximate formulas (equations (1) and (2)). For this purpose, we 
first found the transfer function between the strain on the top sur-
face of the sensor and the output voltage in our FEM. We assumed 
that the strain is a chirp signal, and ran the FEM to evaluate the 
voltage output. We then arrived at the transfer function by dividing 
the Fourier transform of the output by the Fourier transform of the 
input. The following transfer function is an accurate match for the 
evaluated transfer function: ∂ϵ∂t, where κ is the piezoelectric coupling 
coefficient evaluated from the FEM simulations. This equation can 
be further simplified by noting that the skin deformation frequen-
cies are in the order of few Hz, while the resonant frequency of the 
piezoelectric transfer function is ϵ1 ωð Þþϵ2 ωð Þ

V ωð Þ ¼ Cjωþ1=R
κjω

I
. This simplifies 

the transfer function to ϵ1 ωð Þþϵ2 ωð Þ
V ωð Þ ¼ 1

Rκjω

I

. This transfer function is 
used to predict the strain on the top layer of the cFaCES + Tegaderm 
tape when the piezoelectric voltage output is known.

The resulting predicted values of strain compared to those that 
were measured using 3D-DIC are shown in Fig. 4a,b for a few rep-
resentative motions performed by healthy individuals and patients 
with ALS, respectively. Measured strains from 3D-DIC show quali-
tative agreement with strains that were predicted from the cFaCES 
voltage output for most of the motions for both the healthy indi-
viduals and patients with ALS (Supplementary Figs. 123 and 124). 
Although the exact magnitudes are off due to the simplifying 
assumptions made in the FEM, the complexity and strain anisotropy 
of the deformations—that is, surface wrinkling—and limitations on 
camera and speckling resolution in 3D-DIC (Supplementary Note 6 
and Supplementary Fig. 125), the qualitative close match offers an 
accurate predictive power for strain shape and, therefore, epidermal 
deformation signature. Asynchronous timing of voltage and strain 
measurements may result in slight time offsets between experimen-
tal observations and theoretical predictions. Results of integrating 
3D-DIC-measured strains with cFaCES-measured voltage using 
theoretical modelling, prediction and validation therefore provide 
methodologies for establishing predictable and verifiable voltage–
strain correlation of cFaCES in vivo. This means that local defor-
mation signatures that result from different facial motions can be 
predicted on the basis of cFaCES voltage behaviour, setting the stage 
for explorations with RTD.

Furthermore, 3D-DIC results without the sensor can be used to 
determine a sensor placement location such that the four piezoelec-
tric elements of the cFaCES experience computationally distinguish-
able epidermal deformation signatures—that is, spatiotemporal 
strain profiles—during distinct motions for an individual. This is 
useful for RTD, in which the sensor should be placed such that each 
motion can be uniquely identified by the measured voltages in each 
sensing element. Given that the sensor remains laminated onto the 
same location during the occurrence of different facial motions, the 
goal is to maximally differentiate the voltage waveforms generated 
by the four cFaCES piezoelectric elements.

Most biomedical sensor designs lack an in-depth study of the 
target soft tissue before the design and fabrication of the sensor that 
is meant to couple to that tissue. Here, we propose that 3D-DIC can 
be used as a method for in-depth biokinematic study of the target 
region on which a sensor with mechanically active functional mate-
rial, such as piezoelectrics, will be placed. Similar to how chemi-
cal assays of a body part would be conducted before designing 
medication for disorders of that body part, 3D-DIC also enables 
the mechanical study of biological soft tissue before designing the 
mechanically active functional materials on mechanically adaptive 
substrates that are meant to intimately integrate with that soft tis-
sue. We specifically used 3D-DIC results to determine the validity of 
the size and spacing of AlN piezoelectric elements (see the ‘Device 
design considerations’ section in the Methods). Indeed, given the 
above discussion demonstrating sensor voltage correlation with 
εs (Fig. 4), contour maps (with isolines measured using εs) can be  

Fig. 4 | 3D-DIC and theoretical modelling for prediction and validation of cFaCeS performance in vivo. a,b, Experimental (Exp) surface strain tensor trace 
(εs) (blue) and cFaCES voltage (black) data were simultaneously collected and recorded while the participant performed various facial motions, and were 
analysed to determine the validity of measured strains and the capability of the theoretical model to predict surface (top of Tegaderm tape layer) strain 
given the sensor voltage output. Analyses for the following four motions are shown: smile medium magnitude (SM), twitch medium magnitude (TM), 
eyebrow-down medium magnitude (EDM) and pursed lips (PL). The ‘-S’ for each motion label indicates that all of the results are for the strain with the 
sensor laminated on the face. For each period of 5 s, averaged εs across the triangles (n ≥ 9) generated by DIC corresponding to the sensing element from 
which voltage is measured is represented as a solid line, and the shaded band indicates the s.d. The peak strain is denoted in each of the strain graphs by 
the dashed black line. Voltage graphs (black) display the output of the denoted sensing element (red circle). Theoretical (Th) prediction (orange) of in vivo 
with εs from the voltage output of a cFaCES when laminated on facial skin was qualitatively and quantitatively similar to the experimentally observed 
strains from 3D-DIC under the same conditions for the healthy individual, but deviated for the patient with ALS. The images show spatiotemporal εs maps 
in which strains that were calculated by DIC algorithms run on two pairs of cameras were overlaid onto the raw images captured by PG. The strain maps 
shown come from the frame in which peak strain occurred in the area of the sensor. The strain scale bar (%; top left) applies to all of the strain maps in a 
and b. For all strain maps from DIC trials with the sensor, the solid boxes indicate the location of cFaCES; the solid circles indicate its four active elements; 
and the dashed boxes indicate the Tegaderm tape. The red circles indicate the sensing element from which voltage data and strain data were collected. 
The results shown are from a healthy individual (a) and a patient with ALS (b). The time scale is the same for all graphs.
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generated from 3D-DIC results and used to determine sensor design 
parameters and sensor placement location. For determining sensor 
placement location, these contour maps for different motions were 

made translucent (50%) and were overlaid on top of each other (this 
process was repeated over three time points during the facial defor-
mation) to determine, by inspection, an area of facial skin where the 
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four cFaCES piezoelectric elements would experience distinct spa-
tiotemporal strain signatures (Fig. 5), which could purportedly lead 
to computationally distinguishable voltage waveform signatures. 
Future automation of determining a sensor placement location by 
code written to analyse the spatiotemporal strain contours would be 
possible using machine vision algorithms.

RTD and classification of facial deformations
When laminated onto the facial skin, the low-cost, mass- 
manufacturable cFaCES enables the creation of a library of motions 
from which a large subset of human language could possibly be 
inferred. The size of this subset depends on the method of map-
ping facial motions to language as well as the number of distinct 
facial motions that are chosen for decoding. The final number of 
motions chosen for decoding will depend on the number of phrases 
or ideas that are desired to be communicated as well as the chosen 
mapping strategy. As an example, Fig. 6a shows how different strat-
egies for this mapping—that is, direct, tree and conditional—affect 
the total number of possible ideas or actions that the user can com-
municate using seven motions. The motion library can be created 
by each user, on the basis of their preferences and comfort. Each 
motion can be classified as one of the motions in the library by a 
RTD algorithm, which uses a dynamic-time warping, k-nearest 
neighbours (kNN–DTW) model59–61, as shown in Fig. 6a. The kNN–
DTW algorithm predicts the most probable motion on the basis 
of calculating the distance between each of the voltage waveforms 
detected during testing with all of the detected waveforms in the 
training set for the model. Motion classification relies on calculating 
the distance between sets of voltage waveforms from two motions. 
It is important to note that the kNN–DTW algorithm effectively 
compares the voltage waveform shapes rather than voltage values 
or principal-component analysis. For each detected motion, n volt-
age waveforms are captured, each one corresponding to a particu-
lar sensing element on cFaCES. Distances di between the voltage 
waveforms corresponding to the same element i are calculated, 
and the r.m.s. value is then calculated to obtain the total distance 
d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 dið Þ2

q

I
 between an observed signal and a signal in the 

training set, where n is the total number of sensing elements. Each 
distance di is calculated from DTW and, specifically, an approxi-
mation for DTW, which coarsens the temporal resolution of the 
voltage waveform, computes a warped distance matrix between two 

signals at that lower resolution, and projects that matrix back into 
finer resolution. This algorithm has previously been developed and 
built into a Python library called fastdtw62, which was adapted for 
use in this kNN–DTW model. Once the total distance between the 
detected motion and each of the motions in the training set is calcu-
lated, the kNNs—that is, the voltage waveform sets with the k lowest 
total distances—are identified and their motion labels are used to 
determine the weighted-average probabilities of each motion label. 
The motion with the highest probability is labelled the ‘classifica-
tion’ of the detected motion.

In the RTD system, the cFaCES is laminated onto the facial skin 
and connected to a custom-built signal-processing board (SPB) that 
performs differential voltage amplification, analogue signal filter-
ing and analogue-to-digital conversion (Supplementary Fig. 126), 
and the output of which is connected to a Raspberry Pi for portable 
application. The onboard processor of the Raspberry Pi runs the 
kNN–DTW algorithm code files, which were written in the Python 
language (v3.6). Before RTD can be tested, the participant completes 
a training session that involves performing a motion 12 times. Each 
motion is identified in the code, and the interval of 4 s containing 
the motion-induced voltage output (100 Hz sampling rate) of the 
sensor is detected, stored and filtered digitally using a sixth-order 
low-pass Butterworth filter with a 6 Hz cut-off frequency. This is 
repeated for each distinct motion type in the participant’s desired 
library, and forms the calibration set. The participant then per-
forms a series of motions that are classified in real-time using the 
kNN–DTW algorithm (Supplementary Video 8). The extent of the 
‘real-time’ aspect of our decoding algorithm is qualified by the aver-
age lag time (mean ± s.d.) between the end of the user’s performance 
of the motion and the display of the classification result, which is 
1.71 ± 0.12 s (Supplementary Table 3). Evaluation of the RTD sys-
tem on healthy individuals and patients with ALS involved measur-
ing the testing accuracy, and is shown in Fig. 6b,c, respectively. Eight 
voltage waveforms were randomly selected from each motion in the 
calibration set, forming the training set. Testing accuracy refers to 
the percentage of motions that were correctly identified from the 
remaining four voltage waveforms from each motion in the cali-
bration set when predicted using a model containing the training 
set. The testing accuracies reported here were calculated after eval-
uating the RTD model using threefold-stratified cross-validation, 
resulting in 27 different dataset combinations for each combination 
of piezoelectric elements usable for model evaluation.
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the k = 3 nearest neighbours on the basis of the magnitude of efficiently calculated dynamically time warped distances di of the signals of each of the 

four sensing elements, with total distance calculated as d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 dið Þ2
q

I
. Ti,j represents the jth signal from sensing element i in the training data. The 

classified motion can be used to create a library of any desired size, due to the potential to assign either additive, multiplicative or exponential meaning to 
each motion. In the example mapping on the far right of a, seven motions are used: twitch (T), smile (S), open mouth (OM), pursed lips (PL), mouthing the 
vowel ‘I’ (V-I), mouthing the vowel ‘E’ (V-E) and mouthing the vowel ‘O’ (V-O). In this mapping, five selector motions (T, S, OM, PL and V-I) are used to 
select options within each command or language message menu, indicated by (cmd)map and (lang)map, respectively. Two scroll motions (V-E and V-O) 
are used to scroll through n different command sets in a multiplicative map in which there are 5n total selectable commands (c). These motions can also 
scroll through p language sets, and the five selector motions can then navigate through message options arranged in a tree-like exponential mapping with 
q levels, leading to p5q total selectable messages (m). b,c, Threefold-stratified cross-validation for model evaluation results in average testing accuracies 
of the RTD system for a healthy individual (b) and a patient with ALS (c). The average (mean ± s.d.) of overall classification accuracies involving only 
one element was 59.9 ± 2.1% (n = 675) and 59.4 ± 4.7% (n = 135) for the healthy individual and the patient with ALS, respectively. For two elements, 
the accuracies were 74.3 ± 1.4% (n = 783) and 65.0 ± 7.9% (n = 27) for the healthy individual and the patient with ALS, respectively. For three elements, 
the accuracies were 82.7 ± 1.8% (n = 405) and 70.3 ± 10% (n = 27) for the healthy individual and the patient with ALS, respectively. For four elements, 
the accuracies were 86.8 ± 3.0% (n = 324) and 75.0 ± 17.4% (n = 27) for the healthy individual and the patient with ALS, respectively. As the number of 
sensing elements used in RTD is increased, the accuracy of motion classification increases.
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Here, we show the results of RTD that was performed using a 
small subset of three motions (smile medium (SM), open mouth 
(OM) and PL) by healthy individuals and patients with ALS, with 
a focus on testing the effect on the testing accuracy of increasing 
the number of piezoelectric elements n used for classification. For 
a given sensor for which n elements are usable for RTD, evaluation 
was performed for every combination of j ≤ n elements. RTD evalu-
ation suggests that increasing the number of elements improves the 
testing accuracy, as shown in Fig. 6b,c. The average (mean ± s.d.) of 
overall classification testing accuracies involving only one element 
was 59.9 ± 2.1% and 59.4 ± 4.7% for the healthy individual and the 
patient with ALS, respectively. For two elements, the accuracies 
were 74.3 ± 1.4% and 65.0 ± 7.9% for the healthy individual and the 
patient with ALS, respectively. For three elements, the accuracies 
were 82.7 ± 1.8% and 70.3 ± 10% for the healthy individual and the 
patient with ALS, respectively. For four elements, the accuracies 
were 86.8 ± 3.0% and 75.0 ± 17.4% for the healthy individual and 
the patient with ALS, respectively. Examples of voltage signals that 
were simultaneously recorded from all four elements of a cFaCES 
laminated onto the cheek are shown in Supplementary Fig. 127. 
This observation suggests that it is important to use multiple spa-
tiotemporal signals—that is, multiple sensing elements—to improve 
the accuracy of RTD. The cFaCES design allows for a maximum of 
four such sensing elements, but further increasing the number of 
elements used for RTD could potentially make decoding accuracy 
even higher. However, it is possible that certain motions may be 
too similar for a given individual, for example, the case of OM and 
PL for a healthy participant (Fig. 6b) and, for such cases, only one 
of those motions should be included in the individual’s nonverbal 
communication library to increase decoding effectiveness.

To evaluate the potential for the RTD system to be used across 
a wider range of motions, we studied the classification test-
ing accuracy of the kNN–DTW algorithm, again using stratified 
cross-validation, on a set of post-recorded cFaCES single-element 
signals (Supplementary Fig. 128). For four, six and eight motions, 
the accuracies were 89.3 ± 18.5%, 65.5 ± 16.6% and 50.1 ± 23.9%, 
respectively. Given these positive results from single-element sig-
nals, and the clear potential for improvement of the accuracy with 
increasing number of elements included in RTD (Fig. 6b,c), it is 
viable to use the RTD system reported here for a wider range of 
motions in future studies. Although our study aims to achieve a bal-
ance between real-time computational load and decoding accuracy, 
a further easily achievable increase in testing accuracy could result 
from increasing the number of voltage waveforms per motion col-
lected in the calibration set and used in the training set63,64. For this 
representative study, we establish the potential for the cFaCES to be 
used as part of a nonverbal communication interface.

outlook
The concepts, materials, system design and characterization meth-
ods introduced here offer new routes for rapid in vivo biokinema-
tic assessment of epidermal surfaces during dynamic movements. 
The conformable nature of the sensors, together with their predict-
able responses that are consistent with theoretical models, offer a 
high-performance operation that is cross-validated with 3D-DIC 
studies. Non-contact, full-field optical strain assessment method-
ologies coupled with theoretical models have wide applicability 
for design, placement and cross-validation of a host of conform-
able on-body sensors27,28, even when they are laminated onto highly 
curvilinear regions of the body. Particularly, 3D-DIC studies cou-
pled with detailed 3D multiphysics simulations and analytical cal-
culations have the potential to characterize in  vivo strain sensing 
by modalities other than piezoelectric elements and even inform 
mechanically adaptive device design. In  vivo RTD trials of facial 
motions to evaluate the proposed fully characterized device for use as 
a nonverbal communication interface demonstrated that increasing  

the number of sensing elements used in classification led to 
increased testing accuracies. The present limitations of the cFaCES 
system are as follows: (1) low density of sensing elements, (2) small 
area coverage, (3) wired connections and (4) external adhesion 
mechanism (Tegaderm tape). Specifically, low spatial resolution and 
small area coverage of the sensing elements, although ensuring low 
computational load, nevertheless limit the ultimate distinguishabil-
ity of a large set of distinct facial motions (n > 8). Future embodi-
ments might incorporate high-density, further-miniaturized arrays 
of sensing elements to increase spatial coverage and, therefore, 
improve language classification accuracy across a wide variety 
of motions, which could greatly increase the library size of facial 
motions. Scaling the spatial density of strain measurements attain-
able by the cFaCES from its present form (2 × 2) to a larger configu-
ration (n × n) would necessitate careful routing of a larger number 
of interconnects, further streamlined fabrication flow and improve-
ments in the signal processing circuitry (that is, by implementing 
multiplexing). As our system serves to project the capabilities of a 
first-prototype low cost, computationally light, conformable non-
verbal communication technology, wireless data or power trans-
mission components were not pursued in this study. However, such 
systems may be developed to co-integrate with wireless communi-
cation for continuous clinical monitoring of a wide range of neuro-
muscular conditions, in which variations of strain values measured 
by cFaCES are anticipated due to either time-dependent altera-
tions in muscle movements and, therefore, measurable epidermal 
deformations due to neurodegeneration, or a response throughout  
medical therapy.

Methods
Device design considerations of a cFaCES. AlN was used as the piezoelectric 
material in cFaCES for several reasons: its low cost65, complementary metal 
oxide semiconductor (CMOS)-compatible processing34,35 and its lead-free 
nature, making the material more suitable for mass manufacturing, clinical 
translation and adoption in future lead-free industrial standards36,37. From a 
processing standpoint, piezoelectric AlN thin films are usually prepared using a 
reactive sputtering process in N2–Ar plasma, with an Al target. Here, the reactive 
sputtering process is compatible with the standard 200-mm wafer process, making 
it suitable for mass production66. The CMOS-compatible nature of the AlN 
piezoelectric layer further enables ease of mass manufacturability. Although AlN 
has lower piezoelectric coefficients than standard thin film piezoelectrics such 
as PZT25, PZT is not CMOS-compatible and may be subject to aging and other 
material property changes over time67. As a post-CMOS-compatible piezoelectric 
material, AlN-sputtered thin films are commercially used in fingerprint sensors68 
and thin-film bulk-wave acoustic resonator filters69,70. Owing to its low-cost 
microfabrication and mass-production capability using microelectromechanical 
systems (MEMS) technology, AlN-based resonators have been developed that 
have been proven to operate above 6 GHz for 5G mobile communication71. Finally, 
the kNN–DTW RTD algorithm used here classifies facial motions on the basis of 
piezoelectric voltage waveform shapes rather than voltage values (Supplementary 
Fig. 127); the relatively lower voltages generated by AlN piezoelectrics are therefore 
not an issue in our nonverbal communication technology.

Furthermore, functional AlN thin films have been demonstrated widely on 
flexible substrates (usually polyimide or polyethylene terephthalate)32,72–76; however, 
the use of AlN thin films in conformable, stretchable conditions has not yet been 
demonstrated owing to difficulties in the microfabrication processing techniques. 
Conventionally, high-quality AlN thin films are manufactured on Si wafers with 
or without a layer of SiO2 and, therefore, most AlN MEMS devices are rigid77–79. 
Here we present microfabrication techniques that maintain the CMOS-compatible, 
low-cost nature of AlN in a conformable form factor for coupling with the 
highly curvilinear surfaces of the face (Fig. 1) while remaining operational 
during high-strain, cyclic dynamic stretching and buckling deformations that are 
involved in facial motions on the cheek and temple (Figs. 2 and 3). The full width 
at half maximum (FWHM) of X-ray diffractometer (XRD) rocking curve is one 
well-established criteria for determining the quality of the synthesized AlN along 
the c-axis. Supplementary Table 2 compares the FWHM of this research with other 
studies of AlN thin films on rigid and flexible substrates. Although AlN has been 
reported to be fabricated on polymeric substrates, such as polyimide and parylene, 
their FWHM of XRD rocking curve are substantially higher than that of AlN on 
Si or SiO2, as a consequence of the rough surface of the polymeric substrates and 
large lattice strain mismatch. Here we developed a new microfabrication process to 
enable the flexible AlN sensor without undermining the quality of the AlN crystal 
thin film. The FWHM of the AlN in this study is only 1.69° (Supplementary Fig. 
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5 and Supplementary Table 2), fairly close to those on Si-based substrates. Thus, 
our microfabrication process of AlN maintains cFaCES as a conformable device 
without sacrificing functionality.

The thickness of the AlN piezoelectric layer was chosen by considering the 
trade-off between the signal-to-noise ratio (SNR) and the bendability of the 
final device that comes with changing the thickness of AlN. A thicker (thinner) 
AlN layer results in higher (lower) SNR, due to higher d33 coefficient80, and 
reduced (greater) bendability. Theoretical modelling results show that increasing 
the thickness of the AlN layer increases the voltage output of the cFaCES, but 
decreases the minimum allowable ROC before fracture (Supplementary Note 2 
and Supplementary Fig. 129). As the kNN–DTW algorithm distinguishes between 
distinct motions by voltage waveform shape instead of value, the exact thickness 
of the AlN layer would negligibly affect the detection accuracy, provided that 
the signal processing circuitry can reliably filter and amplify the voltage signal 
generated by this piezoelectric layer. Finally, from a processing standpoint, when 
growing a thicker AlN layer, more defects appear and the c-axis orientation of AlN 
is gradually undermined81. The non-c-axis oriented AlN has negative effects on its 
piezoelectric properties. In this study, the 1.5-µm-thick AlN has been proved to be 
highly c-axis oriented by TEM and XRD rocking curve (Supplementary Fig. 5).

Mo was selected as the electrode material due to the reduced lattice mismatch 
that it provides for the piezoelectric layer, as well as its compatibility with the 
MEMS process. To ensure the high quality of the c-axis texture of the AlN layer, a 
critical strategy is to reduce lattice mismatch between the underlying metal layer 
and the AlN layer. The lattice parameter of AlN ranges from 4.978 Å to 4.982 Å 
for the c-axis. Despite the fact that high-quality AlN has been synthesized on Mo 
(110), Al (111), Pt (111), Ti (002) and Au (111) substrates due to their reduced 
lattice mismatch, a large concentration of nitrogen was reported to incorporate 
into Ti and Al layers, which undermines the electrode conductivity (nitrogen 
plasma reacts with Al to form AlN during the reactive sputtering process)34,82–84. 
Moreover, Pt, Au and Ag are not CMOS-compatible materials, and they cannot 
be etched by dry-etching processes using MEMS technology. By contrast, Mo is a 
CMOS-compatible material that can be precisely etched by the mixture of O2/Cl2/
Ar inductively coupled plasma. A Mo bottom layer also provides good adhesion 
for the AlN layer85. Finally, conductive materials for the cFaCES were selected such 
that relatively low-cost, widely available materials that are often used in current 
manufacturing or microfabrication processes can be used. Although conventional 
electrode materials used in research, such as Au, Pt and Ag, could have been 
used for greater ductility, Mo electrodes and Al bonding pads were used for their 
relatively low cost and standard usage in industrial processes86–88. The limited 
thickness (200 nm) and serpentine structures of the Mo electrodes enable increased 
stretchability despite lower ductility compared with precious metals89.

SiO2 was chosen as the encapsulation material due to a few processing concerns. 
The growth of SiO2 on the Si test wafer can better ensure a flat surface, in terms of 
surface roughness, compared with using other polymer materials. The flat substrate 
surface enables the growth of highly crystalline AlN along the c-axis90. The use of 
SiO2 as the substrate layer for AlN growth during microfabrication is the primary 
reason why the AlN layer in cFaCES has a similar piezoelectric effect to those grown 
on rigid silicon, as evidenced by the XRD rocking curve (Supplementary Fig. 5). 
Furthermore, SiO2 is a dielectric material that is commonly used for the insulation 
of MEMS devices, so it is a well-known, relatively inexpensive material in standard 
cleanroom procedures. Furthermore, the plane-strain modulus (Supplementary 
Note 2) of SiO2 is 25 times greater than that of polyimide. Thus, roughly the same 
NMP of cFaCES can be achieved with a thinner layer of SiO2 compared with 
polyimide, which allows for less material usage.

We used our developed theoretical models to study the effects of the design 
parameters (thicknesses, sizes, shapes and distances in-between elements) on 
the performance of a cFaCES. Two types of models were developed for this 
purpose. The first is the FEM, which can include all of the intricate details and 
complexities of the cFaCES. The second are analytical models that rely on effective 
simplifications of the sensor and give closed-form relationships that better reveal 
the design decisions. There are two key design objectives studied using these 
models. The first objective is voltage sensitivity (that is, the amplitude of the 
generated voltage for a given facial strain). Larger voltage sensitivities enhance the 
SNR and are therefore preferable. The second objective is the compliance of the 
cFaCES sensor. If the sensor is notably stiffer than the skin, it will notably affect the 
skin deformations, potentially diminishing the amplitudes of those deformations. 
This not only will be uncomfortable for users, but also will make the cFaCES 
dysfunctional. Detailed results from the theoretical models of this study reveal 
that, the thicker the AlN layer, the greater the voltage sensitivity and the lower the 
sensor compliance. The cFaCES has enough voltage sensitivity to respond to facial 
deformations (~0.5–15%; Supplementary Figs. 29–122) and, at the same time, does 
not disrupt the facial motions. Although increasing the AlN thickness improves 
the voltage sensitivity, it does not notably increase the accuracy of the device, as the 
current dimensions result in high SNR for all cases. However, increasing the AlN 
thickness will make the cFaCES more rigid than the skin and will disrupt facial 
motion. The present dimensions are therefore close to the optimal values for our 
multiobjective optimization problem.

Our main method for parametric study is FEM, which can handle all of the 
details and complications of the cFaCES sensor, including all layers. We studied the 

effect of the design parameters on (1) the generated voltage (that is, the sensitivity 
of the cFaCES) and (2) the stiffness of the cFaCES (that is, the feel of the sensor).

In the sensitivity analysis, we examined the voltage generation of the sensor 
when subjected to a sinusoidal uniaxial facial strain of 1% amplitude. As shown in 
Supplementary Fig. 129a, the amplitude of the generated voltage increases with the 
thickness of the sensing elements and decreases with the thickness of the substrate 
PDMS layer. This suggests that, the thicker the AlN layer, the greater the voltage 
sensitivity, and the only limitations for the AlN thickness are set by fabrication. 
However, this verdict is contradicted by the fact that, if the AlN layer is thick, 
the cFaCES will be too stiff—it will not only feel uncomfortable, but it will also 
diminish facial gestures (the very thing it should measure).

To analyse the stiffness (and the feel) of the sensor, we calculated the axial 
stiffness from the equation k ¼ Fx

δx
I

, where Fx is the force applied to one end of the 
sensor in X direction and δx is the displacement in the X direction. In this analysis, 
we applied forces at the two ends of the cFaCES and simulated its deformation 
using COMSOL. We measured the motion of the two end faces and used it in the 
aforementioned formula. As shown in Supplementary Fig. 129b, increasing the 
AlN thickness increases the overall stiffness of the cFaCES.

The critical stiffness value for the cFaCES is the skin stiffness. We compared 
the stiffness of the cFaCES to the stiffness of the skin. If the stiffness of the sensor 
is notably larger than the skin stiffness, it will affect the skin motion. The stiffness 
of the skin is estimated as k ¼ Fx

δx
I

, where E is Young’s Modulus, A is lateral area and 
L is length of skin under the sensor. The Young’s Modulus of the skin is assumed 
to be E ≈ 31 kPa (ref. 91) and thickness ~6.39 mm (this corresponds to experimental 
average values from cheek skin)92. The resulting estimated value of the stiffness 
of the skin is 113 N m−1. The present device design with 1.5-µm-thick AlN has a 
stiffness of 166 N m−1, which shows that the stiffness of the device is close to the 
skin stiffness; therefore, cFaCES does not fundamentally change the skin stiffness.

The cFaCES piezoelectric elements themselves are much stiffer than the 
cFaCES substrate material and human skin; therefore, changing the size (lateral 
area in the xy plane) of the piezoelectric elements affects the cFaCES stiffness 
considerably. The chosen lateral area was determined by evaluating the trade-off 
between (1) large size diminishing spatial resolution of strain measurement while 
increasing the stiffness, and (2) small size resulting in low voltage sensitivity 
(Supplementary Fig. 129c). The chosen value of lateral area was ~0.725 cm2, 
resulting from an AlN element radius of 0.24 cm.

However, the shape of piezoelectric elements does not affect the cFaCES 
stiffness provided that the lateral area and thickness remain constant, which means 
that a cFaCES with square piezoelectric elements of side length k ¼ EA

L
I

 results 
in the same cFaCES stiffness as a cFaCES with circular piezoelectric elements of 
radius r. We performed two FEM models with the same piezoelectric lateral area. 
One has circular patches with a radius of ~0.24 cm and the other has rectangular 
patches with a side length of ~0.42 cm. The sensor was pulled with a specific force 
from one side and the average displacement field of that side in the same direction 
was measured. As shown in Supplementary Fig. 129d, both models have the same 
displacement field distribution, which confirms that sensor stiffness is independent 
of the shape.

We further developed an analytical model to show the relationship between 
the output voltage and the amount of shear force exerted to the device. The electric 
displacement vector D can be defined as D ¼ Q

Ap
¼ d31σxx þ εE

I

 (ref. 93), where Q is 
the electric charge, Ap is the lateral area of piezoelectric element, ε is the dielectric 
constant matrix, E is the electric field vector, d31 is the piezoelectric coefficient and 
σxx is the xx component of the stress matrix. As there is no external voltage applied 
to the piezoelectric patch, the equation reduces to D = d31σxx. The electric charge 
is therefore Q = d31σxxAz, where Az is the lateral area of the electrode. Furthermore, 
for a simple beam comprising a piezo layer and a substrate layer, the tension in 
the longitudinal direction is given by Fxx ¼ kp

kpþks
F

I
, where Fxx is the force in piezo 

layer, F is the total force applied to the beam, and kp and ks are stiffnesses of the 
piezo and substrate, respectively, which can be calculated by Fxx ¼ kp

kpþks
F

I
 and 

kp ¼ Ep tpw
L

I
 (ref. 93; where p and s subscripts refer to piezo and substrate layers, E is 

Young’s Modulus, t is the thickness of layer, w is the width of the sensor and L is 

the length). Thus, the tension can be written as σxx ¼
kp

kpþks
F
tpw

I
. On the basis of this, 

the electric charge can be rewritten as Q ¼ d31 Lw
kp

kpþks
F
tpw

I

. One can solve for the 
instantaneous current in the circuit by taking the time derivative of both sides and 
writing Kirchhoff ’s law for the current, which yields Q ¼ d31 Lw

kp
kpþks

F
tpw

I
, where 

α ¼ d31 LEp

Ep tpþEs ts

I
, C is the capacitance of the simplified sensor model, V is the voltage 

generated, R is the equivalent resistance and α ¼ d31 LEp

Ep tpþEs ts

I
 is the time derivative of 

the applied force. Furthermore, one can form the transfer function between the 
voltage as output and force as input and rearrange terms in the following format 
V sð Þ
F sð Þ ¼ αs

Csþ1
R

I
. The frequency response function of the above transfer function is 

shown in Supplementary Fig. 128e.
Similarly, for the case of constant strain, one can formulate the electric-charge 

density as V sð Þ
F sð Þ ¼ αs

Csþ1
R

I

, where e is the stress piezoelectric matrix, εxx is the 
strain component xx, ε is the dielectric matrix with the coefficients of electric 
permittivity on its diagonal and E is the electric field vector. The external voltage 
applied is zero and so is the electric field E; therefore, D = e31εxx. The electric charge 
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along the electrodes are therefore obtained by Q = e31εxxAz = e31εxxLw. Taking the 
time derivative of both sides of the equation and using Kirchhoff ’s Law yields 
to D ¼ Q

Ap
¼ e31εxx þ εE

I
, where β = e31Lw. Taking the Laplace transform of both 

sides of the equation and rearranging the terms with respect to voltage leads to 
V sð Þ
εxx sð Þ ¼

βs
Csþ1

R

I

, which describes the transfer function between the voltage and strain 

for the case in which the strain is assumed to remain constant. The frequency 
response function of this transfer function is provided in Supplementary Fig. 128f.

The total force exerted on the device can be obtained using the equivalent 
stiffness keq, which relates to the force F by F = keqδ (ref. 94), where δ is the uniaxial 
displacement. The strain can therefore be calculated by V sð Þ

εxx sð Þ ¼
βs

Csþ1
R

I

. Similarly, the 

total stress in the device section can be obtained by ε ¼ δ
L ¼ F

keqL
¼ F

w tpEpþtsEsð Þ
I

. We 

can define the equivalent modulus of elasticity for the device by Eeq ¼ σ
ε ¼

tpEpþtsEs
tpþts

I

 
(ref. 94). From this equation, it is clear that the equivalent stiffness and elastic 
modulus of a cFaCES are more sensitive to the variation of the piezoelectric layer 
thickness compared with that of the substrate, because the elastic modulus of the 
piezoelectric layer is two orders of magnitude higher than that of the substrate.

From a user-experience standpoint, we considered the effect of the size of the 
entire device. A large device area (that is, covering nearly the whole face) may 
be quite uncomfortable for continuous lamination onto the skin of patients with 
ALS. Furthermore, a large-area sensor would involve more unnecessary signals, 
rendering the RTD much more complex. With such considerations, we felt that a 
2.5 cm × 3.5 cm device with a ~1.1 cm × 1.1 cm sensor array, which can cover the 
areas in which dynamic deformations of the skin occur during facial motions  
(Fig. 5), could provide functionality without diminishing user comfort too greatly.

Finally, the strategy for determining the size and spacing of the sensing 
elements directly relates to the strain contour maps given in Fig. 5. In addition 
to the voltage generation (Supplementary Fig. 129c) and stiffness considerations 
discussed above, we evaluated contour maps generated by 3D-DIC (see the 
‘Modelling of device behaviour during facial deformations’ section in the main 
text) to determine whether the radius of the AlN piezoelectric element is sufficient 
to capture the dynamic strain deformation patterns occurring on the face during 
facial motions. An element that is too large would average out and, therefore, 
lose the spatiotemporal dynamics of the facial deformation strains, whereas an 
element that is too small would require too large of an array, resulting in a high 
computational load for the RTD classification algorithm. On the basis of a study 
of 3D-DIC contour maps, the minimum spacings between strain isolines (each 
representing a 3% gradation change) for various motions ranges from 0.15 cm to 
0.27 cm in the target region of interest for the sensor (Supplementary Fig. 130).  
The choice of an element radius of 0.24 cm (and, therefore, a diameter of 0.48 cm) 
would provide an acceptable choice by which ~3% strain gradations can be 
appropriately deduced by the piezoelectric elements without too much loss of 
dynamic strain data and without requiring too large of an array of elements. 
Given the size of the piezoelectric elements and the desired size of the element 
array (2 × 2), it is important to note that the one-time data gathered by 3D-DIC 
can be used as a method to determine where sensing elements can be located to 
maximize distinguishability. For our study, we designed the spacing to strike a 
balance between two factors: (1) to be able to distinguish between the local strain 
deformation patterns, as identified by 3D-DIC contour maps (Fig. 5) and (2) to 
have a smaller footprint on the face such that it can be more comfortable and also 
be made visually invisible using cosmetic products (Supplementary Video 1). 
With such considerations, and given that the spacing has to be at least as large as 
the piezoelectric element diameter of 0.48 cm, the distance between the centres of 
adjacent elements was selected to be 0.6 cm.

Microfabrication process of a cFaCES. The microfabrication of a cFaCES starts 
from a standard wafer cleaning process on an 200-mm silicon (Si) test wafer 
(Sumco). Subsequently, a layer of aluminium (thickness, 50 nm) was deposited 
onto the surface of the cleaned Si wafer. Using plasma-enhanced chemical vapour 
deposition (Oxford Instruments), a silicon dioxide layer was grown on the Si 
wafer with the following precursors: SiH4 (260 standard cubic centimetres per 
minute (sccm)), N2O (1,000 sccm) and N2 (500 sccm). Mo bottom electrode 
(thickness, 200 nm) was deposited onto the soft oxide layer using the sputtering 
technique in the same deposition run, followed by an AlN bulk layer deposition 
(thickness, 1.5 µm). Both AlN seed and bulk layers were deposited using a pure Al 
target (99.9995%, Vacuum Engineering & Materials) in a mixture of Ar (20 sccm) 
and N2 (20 sccm) gases in direct current (d.c.) pulsed power supply (Sigma 
Deposition Systems, SPTS Technologies) at 750 W and with a working pressure 
of 2.8 × 10−3 mbar. The Mo layer was sputtered using a pure Mo target (99.95%, 
Vacuum Engineering & Materials) in pure Ar atmosphere (66 sccm) under a d.c. 
power supply of 400 W and a working pressure of 5 × 10−3 mbar. After the optical 
lithographic process to pattern AlN and Mo stacked layers, the Mo top layer was 
sputtered in the same condition as the Mo bottom electrode layer. The Mo top layer 
was dry etched using an inductively-coupled-plasma-reactive ion etching (RIE) 
system (PlasmaPro 100 Cobra ICP etching system, Oxford Instruments) under 
the same conditions reported for the Mo bottom layer. Eventually, the PI2611 
polyimide precursor solution (HD Microsystems) was spin-coated (PWM50, 
Headway Research) at 2,000 r.p.m. for 60 s on the Mo top electrode and followed 

by a curing process at 350 °C for 30 min performed on a VWR hot plate (VWR 
International). A layer of PDMS (matrix crosslink ratio of 1:10) and Sylgard 
184 Silicone Elastomer (Electron Microscopy Science) was then spin coated 
(1,000 r.p.m. for 60 s) and cured at 60 °C overnight in a curebox (CB-4015, Wicked 
Engineering) as the final encapsulation layer.

After the microfabrication process, the cFaCES was released by an anodization 
process in a 3% NaCl (Chemical reagent, Sigma-Aldrich) solution (Supplementary 
Fig. 3). The microfabricated chip acted as the anode, while a chip coated with 
a layer of gold acted as the cathode. A potential of +2 V was applied by a d.c. 
power supply (E3631A, Keysight Technologies) to the anode and cathode. After 
release, the sensor was placed upside down onto a glass plate and the SiO2 layer 
was patterned to expose the bonding pads and form electrical connections using 
anisotropic conductive film cables. Eight identical cFaCES devices were used to 
perform all experimental demonstrations to characterize the device performance 
and for use in in vivo tests.

Biocompatibility testing of the cFaCES. To conduct biocompatibility tests 
(Supplementary Fig. 7), human epidermal keratinocytes (HEKs, Sigma-Aldrich) 
as representative cells were grown in keratinocyte serum-free growth medium 
(Sigma-Aldrich). The medium was changed every time the cells reached 40% 
confluence at 37 °C, 5% CO2 and 95% relative humidity. When the keratinocyte 
culture reached 80% confluence, it was prepared for subculture.

To prepare for the biocompatibility study, a cFaCES was sectioned into 1 cm2 
coupons to fit into a 24-well glass-bottom culture plate (CellVis). The coupons 
were sterilized under ultraviolet light for 30 min. The control wells and devices 
were coated with 150 μl of 1 mg ml−1 fibronectin (Thermo Fisher Scientific) for 
20 min. Excess fibronectin was removed through aspiration and allowed to dry for 
an additional 30 min. HEKs were cultured until reaching 75% confluence. HEKs 
were cultivated for 1 d, 3 d and 9 d at 37 °C, 5% CO2 and 95% relative humidity. The 
medium was changed every 48 h.

To evaluate the biocompatibility of the AlN structures, the viability and 
cytotoxicity of the keratinocytes was determined after 9 d of cultivation using the 
two colour fluorescence LIVE/DEAD viability (Invitrogen) assay. For the LIVE/
DEAD assay, the cells were grown on the cFaCES and, after 9 d, were prepared 
and stained according to the manufacturer’s protocol (Sigma-Aldrich). In brief, 
the culture medium was aspirated from each of the wells and then rinsed three 
times with 1× phosphate buffered saline (PBS). A working solution (consisting 
of 5 ml 1× PBS, 10 μl of 2 mM ethidium homodimer I and 2.5 μl of 4 mM Calcein 
AM) was added to cover each of the samples. The submerged samples were 
incubated for 30 min at 37 °C. After the incubation period, the working solution 
was removed, and the samples were rinsed once with 1× PBS, then mounted and 
immediately imaged with the Nikon Ti confocal fluorescent microscope using a 
×40/1.15 NA Nikon water-immersion (WI) objective. For bright-field imaging 
of cells growing on devices, a ×40/1.15 NA WI objective was used without the 
confocal fluorescence system.

Preparing the mock skin sample. The process to prepare mock skin was divided 
into three steps: (1) fabricating the skin mould, (2) synthesizing the artificial skin 
layer and (3) peeling the artificial skin layer from the skin mould. First, Ecoflex A 
and B (Body Double Silk, Smooth-On) were mixed at a 1:1 weight ratio, blended 
thoroughly for 2 min and placed onto the skin of the dorsal area of the hand, where 
it was naturally cured under ambient indoor conditions for 30 min. The cured 
layer was then removed from the hand and placed into a plastic petri dish (VWR 
International) with the textured side facing up, so that it could function as a mould. 
The mixture of Dragon Skin A and B (Dragon Skin 30, Smooth-On) at a weight 
ratio of 1:1 was subsequently blended with 3 wt% silicone pigments (Silc Pig, 
Smooth-On) to simulate the skin colour, and then poured on top of the mould that 
was made by Ecoflex A and B. Eventually, the artificial skin layer was peeled from 
the top of the mould after curing for 12 h at room temperature.

The process for laminating the cFaCES onto the skin. Laminating a cFaCES 
onto the same location of the facial skin over multiple sessions of lamination and 
delamination is possible using a scaffold (Supplementary Fig. 1). The individual’s 
face was prepared to be free of lotions, creams and oils. A low-stretch fabric was 
then held in place over the region of interest on the face on which the sensor was 
to be placed. The fabric was fitted over facial features such as the chin and nose. 
A thin marker was used to outline key features of the face—such as corners of the 
ears, nose, mouth and eyes—which can be used to realign the fabric. The fabric 
was cut along the drawn lines and checked for alignment with facial features. Then, 
a 3 cm × 5 cm area was outlined and cut out of the fabric. This location was where 
the cFaCES and Tegaderm was placed. Two pieces of clear, pressure-sensitive tape 
were placed onto the short sides of the cut-out rectangle to achieve adhesion with 
Tegaderm tape. A pressure-sensitive tape with relatively low adhesion force to the 
non-sticky side of Tegaderm tape is preferred. This creates the alignment scaffold. 
The sensor was then placed onto the sticky side of the Tegaderm tape, and the 
non-sticky side of Tegaderm tape was adhered onto the sticky side of the alignment 
scaffold and prepared for attachment to the face. The alignment scaffold with the 
cFaCES attached was laminated onto the face, starting from one edge and making 
sure that all of the previously marked key features were aligned. Subsequent 
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removal of the alignment scaffold leaves behind the cFaCES laminated onto the 
skin in a particular region of interest. The paper backing on Tegaderm tape was 
removed such that the sensor could freely follow facial deformations.

Surface characterization of a cFaCES. The mass of a cFaCES device was 
determined using an analytical balance (ME-T, Mettler Toledo). Low-resolution 
and high-resolution optical images of the cFaCES were collected using a 
single-lens reflex camera (EOS 6D, Canon) and an optical microscope (BX53M, 
Olympus), respectively. The cFaCES mounted onto the artificial skin was 
imaged using a scanning electron microscopy (SEM, JSM-5600LV, JEOL) at 
low magnification (×100), while the cross-section morphology of the cFaCES 
and top-view morphology of the AlN bulk layer were visualized using field 
emission SEM (FE-SEM Ultra Plus, Carl Zeiss) at high magnification (×5,000) 
with an acceleration voltage of 10 kV. The colourization process for the SEM 
image of the cFaCES on skin was based on the colour burn function in Adobe 
Photoshop CC 2018 (Supplementary Fig. 4). The AlN grain size was calculated 
from the high-resolution SEM images using ImageJ (National Institution of 
Health). To determine the phase composition of AlN bulky layer and verify the 
multilayered structure, the microfabricated cFaCES was examined using XRD 
(SmartLab, Rigaku) operating at 40 kV and 30 mA with a Cu-Kα radiation source 
(Supplementary Fig. 5). After the ~θ–2θ scans from ~20–70°, a rocking curve scan 
was carried out at 2θ where the (0001) reflection was present, by varying the sample 
holder angle ω. The FWHM was measured from the rocking curve to evaluate 
the AlN crystal orientation. The cross-section scanning transmission electron 
microscopy samples were prepared using a focused ion beam milling lift-out 
technique with a FEI Helios microscope (Helios NanoLab 660, Field Electron and 
Ion) operating at ~0.5–30 keV ion beam energy. The cross-section microstructure 
of the AlN bulk layer was characterized using TEM (ARM200F, JEOL) at an 
accelerating voltage of 200 kV with a point-to-point resolution of 0.2 nm.

Adhesion strength tests. Standard vertical peel tests were performed to determine 
the adhesion strength to skin for two types of test samples ((i) 3M Tegaderm 
tape + cFaCES and (ii) the cFaCES by itself) at room temperature (Supplementary 
Fig. 6b). The tests were performed according to a previously established 
methodology30. Tegaderm tape that was cut into the same size as the cFaCES 
(3.5 × 2.0 cm2) was used as the control in the test. In both tests, the measurement 
location was the skin on the back of hand, cleaned with a pad soaked in ethanol. 
Samples with a fixed area (3.5 × 2.0 cm2) were placed onto the inner surface of the 
left forearm, where they were cleaned with a pad soaked in 70% ethanol solution 
(≥96% (v/v), EMSURE, MilliporeSigma). A corner of the sample was attached to 
the tip of the microuniversal testing system (MicroTester 5948, Instron) at 90°. 
The tip moved in an upwards direction to peel samples off from skin at a speed 
of 10 mm s−1. The reported adhesion strength was divided by the entire cFaCES 
area, corresponding to the maximum force value recorded just before the complete 
removal of samples from the skin.

Mechanical characterization of the cFaCES. The mechanical performance 
of the cFaCES was investigated in terms of cyclic compression, bending and 
stretching tests using a microuniversal testing system (MicroTester 5948, Instron) 
equipped with a 50 N load cell exhibiting the force resolution of 2 mN. During the 
mechanical tests, the cFaCES was electrically connected to a DAQ system with 
PXIe-1071, PXIe-8821 and PXIe-4464 components (National Instruments). The 
electrical output from the cFaCES was recorded in real time with application of a 
sixth order Butterworth filter. Electrical data were recorded using NI SignalExpress 
2015 and mechanical data were recorded using BlueHill software. Cycles of 
compression (200×), bending (50×) and stretching (20×) were conducted for each 
type of testing.

For the compressive test, the cFaCES devices were deformed under three 
different conditions—that is, bare sensor on a glass plate; sensor on mock skin; 
and sensor on mock skin with the coverage of Tegaderm tape. The compressive 
test for the last group was used to simulate the condition of wearing the sensor 
on human body with Tegaderm tape. A small glass plate (15.75 mm × 16.20 mm, 
Fisherbrand, Thermo Fisher Scientific) was placed on the top surface of sensors, 
entirely covering all of the sensing elements. The size of the glass plate and mock 
skins carrying the sensors was the same (2.5 cm × 5.0 cm). The compressive load 
was applied in the range of 0–120 kPa and 0–40 kPa for sensors on the bare sensor 
and sensors on mock skin, respectively.

The bending test was performed for bare sensors and sensors on mock skin 
under a frequency of 0.5 Hz. For bare sensors, Instron tips vertically clipped the 
top and bottom of the sensor to expose a testing length of 1.42 cm. For sensors 
on mock skin, two terminals of the mock skin substrate were fixed to leave a 
testing length of 5.4 cm. To prevent the sensor from delaminating from the mock 
skin during the test, Tegaderm tape was applied to the top surface of the sensor. 
The bending line was located in the middle of two rows of sensing elements. For 
sensors on mock skin, the bending distance that the upper tip goes down was 
varied from 1 mm to 10 mm with an interval of 1 mm between each test. The 
corresponding bending radii were determined by fitting the sensor profile from 
optical images. In the case of bare sensors, the bending distance was set from 2 mm 
to 8 mm with an interval of 2 mm.

After the bending test, the stretching test was performed for bare sensors and 
also for sensors on mock skin. Similarly, a layer of Tegaderm tape was laminated on 
the top of the sensor to prevent relative motion between the sensor and the mock 
skin substrate. The testing dimensions of samples were the same as those in the 
bending test, that is, the testing lengths of samples were 1.42 cm and 5.40 cm for 
bare sensors and for sensors on mock skin, respectively. The stretching distance 
that the Instron tip moves upwards ranged from 0.35 mm to 3.5 mm for sensors on 
mock skin, and from 0.0025 mm to 0.3 mm for bare sensors.

Additional calculations demonstrated that the concave and convex buckling 
cases of the bare sensor would theoretically result in the same voltage waveform 
output. Essentially, the theoretical model used for buckling is not sensitive to 
directionality (concave or convex), as the direction of the buckling depends 
only on the small transversal perturbation displacement, which can be in-plane 
(convex) or out-of-plane (concave). Theoretically, and without using a rectification 
circuit, one can determine whether the buckling is convex or concave by tracking 
the polarity of the output voltage. To show that the convex buckling is identical in 
all of the modelling aspects to concave buckling, one can consider the relationship 
between the strain ε and ROC, Eeq ¼ σ

ε ¼
tpEpþtsEs
tpþts

I
, where z is the distance of a given 

point from the neutral axis and ρ is ROC. This leads to the following relationship 
between the moment M and ROC: z

ρ ¼ ϵ

I

 (refs. 94,95), where E is the Young’s modulus 
and I is the area moment of inertia. It can be seen from the above equations and 
the mentioned references that the governing equations of motion are symmetric 
in the buckling directions. The order of layers gets encapsulated in the equivalent 
bending stiffness (EI) term, and the stiffness of the sensor in convex and concave 
deformations is identical; the density of the system is also identical in the two 
deformations. The convex and concave buckling solely depends on the initial 
conditions and are of no consequence to the magnitude of the generated voltage.

However, lamination of the cFaCES onto skin means that the same deformation 
magnitudes of convex and concave buckling cannot occur, which results in 
distinguishability. The mechanical testing is performed on the mock skin with the 
purpose of simulating the in vivo trials on skin. High-magnitude concave buckling 
is not possible when a cFaCES is laminated onto the face, as the bottom of the 
device is stuck to facial skin, and facial skin does not undergo high-amplitude 
concave buckling during any natural facial deformations. It is true that during 
certain motions, such as PL, the cheek skin may pucker inward due to stretching 
of skin over an internal mouth cavity. For such cases, the Fig. 2e strain maps 
demonstrate that during stretching on mock skin there occurs some low-amplitude 
concave buckling (note the out-of-plane deformation in the negative z direction), 
and show that the waveform resulting from such stretching/concave buckling is 
different from the convex buckling, as shown in Fig. 2d. As these two cases result 
in different voltage waveforms, as shown in the Fig. 2d,e experimental and bimodal 
theoretical (analytical and FEM) voltage waveforms, the decoding algorithm based 
on kNN–DTW can distinguish between the two cases (Fig. 6b,c).

FEM. To model the sensor in different configurations using finite element analysis, 
we used COMSOL multiphysics modelling software. This enabled us to model the 
multilayer sensor in full details. We used the Solid Mechanics, Electrostatics and 
Electrical Circuits modules in COMSOL Multiphysics v.5.4. The Solid Mechanics 
module enables the inclusion of piezoelectric effects in the model. The dynamic 
equation of motion is 

1
ρ ¼ M

EI

I
, where u is the deformation vector, S

¼
 is the stress 

tensor and S
¼ is the piezoelectric coupling coefficient tensor. The stress is related 

to the strain tensor through the constitutive equation for linear elastic material F
¼

, 
where E

¼ is the elastic modulus tensor and ϵ
¼ ¼ 1

2 ∇uþ ∇uTð Þ
I

, where uT indicates 
the transpose of u. The electrical displacement D is related to the electric field 
E and strain as D ¼ e ϵ

¼þϵ0ϵrsE
I

, where the electrical permittivity is equal to 
D ¼ e ϵ

¼þϵ0ϵrsE
I

. The model necessarily includes external electrical elements, 
including the equivalent resistance (1 MΩ) and capacitance (265 pF) of the DAQ, 
as shown in Fig. 2c, as the current draw from the DAQ affects the shape and 
magnitude of the observed voltages at the output of the cFaCES. One of the key 
parameters that affects the results of the FEM is damping, for which the isotropic 
damping assumption resulted in a good match between experimental and finite 
element analysis. The damping loss factor η is directly related to the damping 
ratio η = 2ζ used in the analytical models, which ensured that both the analytical 
models and FEMs used the same modelling parameters. The 3D geometry of the 
sensor consists of thin layers with a high aspect ratio. Swept meshing, which was 
specifically designed for ultrathin geometries, was used in the model. This is a 
geometry discretization technique that effectively creates far less hexahedral or 
prismatic mesh elements for disproportionate dimension sizes. The technique 
is a good compromise between accuracy and computational efficiency as other 
meshing techniques create an overabundance of elements for a thin geometry.

Analytical modelling. During the characterization tests, the cFaCES performs 
two fundamentally distinct motions. The first is the buckling motion, which 
is the dominant form of deformation in bending tests. Buckling motion is also 
observed in the stretching tests due to the specific configuration of the stretch 
tests. During the stretch tests, the specimen slides out of the clamp jaws in the 
first cycle of stretching. This results in buckling of the specimen during the next 
cycles. The second type of motion is uniaxial deformation, which is observed 
in compression tests. We modelled each of these two fundamental motions 
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separately, as the motion in each type is inherently different from the other. An 
outline of the buckling and stretching model is provided in the section ‘Mechanical 
characterization and theoretical modelling’ in the main text. The model for 
compression is discussed in Supplementary Note 4.

The key point in the analytical model is that the small AlN patches are part 
of the larger rectangular sensor. The model does not isolate the AlN circles, but 
models the entire rectangular sensor considering the effects of the AlN patches. 
We assumed an Euler–Bernoulli beam assumption—that is, we assumed that 
(1) the cross-section is infinitely rigid in its own plane, (2) the cross-section of a 
beam remains plane after deformation and (3) the cross-section remains normal 
to the deformed axis of the beam. Experimental measurements show that the 
Euler–Bernoulli assumptions are valid for long, slender beams made of isotropic 
materials with solid cross-sections96. Euler–Bernoulli beam theory is applicable to 
the problems in which the length-to-thickness ratio is at least 10 (refs. 97,98). Here, 
the length of the cFaCES is 3.5 cm and its overall thickness is less than 50 µm, 
which implies that the ratio is about 700, and that the Euler–Bernoulli theory 
can be used to model the cFaCES. The challenging part in our model is the fact 
that the width-to-length ratio of our model is less than 10. This does not match 
the assumption that the structure is ‘long’. Although, generally speaking, this 
requires a plate model for the sensor, the forcing conditions make beam models 
sufficiently accurate. The clamping conditions in all of the characterization tests 
make application of loads completely symmetric along the width. The clamps also 
prevent application of any torsional loads to the sensor. As a result, although the 
natural frequencies of the transverse modes are larger but comparable to those 
of the beam modes, they are never excited; it is therefore unnecessary to include 
them in this model99. All factors combined, beam theory99,100 is applicable to the 
theoretical model of the cFaCES in the loading conditions that it experiences. 
Models for curvature101,102, unimodal vibrations103, and nonlinearity104–106 are crucial 
to the model and are described in Supplementare Notes 2–5.

Temperature stability test of a cFaCES. The temperature stability of the cFaCES 
was evaluated using a thermometer (51-2, Fluke) at different temperatures 
ranging from 20 °C to 60 °C (Supplementary Fig. 6c). The cFaCES was mounted 
onto a glass plate (Thermo Fisher Scientific, 12-550-A3, 25 mm × 25 mm × 1 mm), 
which was placed on the top surface of a hot plate (HS40A, EchoTherm). To 
monitor the sensor temperature during the test, there is intimate contact between 
the probe of the thermometer and the surface of AlN sensing element. Sensor 
temperature was regulated to a series of pre-set temperature points by tuning the 
temperature of the hot plate. At each temperature point, electrical output from 
the cFaCES was recorded by a DAQ system with PXIe-1071, PXIe-8821 and PXIe-
4464 components (National Instruments).

Facial motion strain field measurements with DIC. A 3D-DIC set-up 
(Supplementary Fig. 9a,b) was created using six Blackfly GiGE 1.3 Mpx 
cameras (Point Grey Research) equipped with Computar (A4Z2812CS-MPIR, 
2.8 mm–10 mm, 1/2.7′) adjustable lenses (Point Grey Research). The cameras 
were placed in a circular array around a single focal point in which the participant 
could place their head during image acquisition. The cameras were placed along 
a circular arc (diameter, 32 cm) spanning 160°, with each camera 32° away from 
its adjacent camera, enabling a full facial view within images. To power and take 
images simultaneously from all cameras, each camera was connected by ethernet to 
an eight-port network switch (PoE Netgear) as well as an adapter (Point Grey Intel 
Pro GigE host adapter), which enabled connection to a computer with a PCIex1 
slot. To enable uniform lighting and higher-contrast images, three 61-cm LED strips 
(HitLights), each providing 12.6 lumens per cm, were placed on top of the cameras 
facing the participant, and 5800K chip-on-board halo lights (Super Bright LEDs) 
were placed around the lens of each camera. All of the lights were connected to a 
single breadboard, and were supplied power from one of two 12 V, 2 A power supplies 
that were plugged directly into the wall outlets. The 3D-DIC set-up was built with 
enough spatial resolution (1.2 Mpx, 12 bit) to capture the ~1.5 mm dot sizes and their 
random spacings and with enough temporal resolution (6 frames per second) that it 
can capture the natural facial deformations with no blurring in the regions of interest.

Custom code was written to enable image acquisition from the DIC set-up to 
take photos simultaneously at 6 frames per second during each motion. The delay 
between the first camera and the last camera image for each timestep was ~2 ms. 
This command-line-based script in Python 3.6 acquired and saved images from 
a set-up of multiple Point Grey Blackfly GigE cameras. The script used FLIR’s 
Spinnaker SDK and PySpin Python library to interface with the cameras. The user 
can choose from the following three different modes of image acquisition: manual, 
timed and continuous. After image acquisition was completed, all of the images 
were rotated 270° to correct for the camera orientation and saved under the PNG 
file format. All of the images were taken in greyscale, and image naming followed 
the requirements specified for use with MultiDIC40.

For image collection, the participant’s skin surface of interest (either temple or 
cheek) was first cleaned with water and dried with paper towels. The skin was then 
painted with non-toxic, water-based, white liquid makeup (Mehron), which was 
applied in a thin layer using a paintbrush (Zhu Ting) to provide a high-contrast 
background. A speckled dot pattern was applied on top of the dried background 
layer by airbrushing non-toxic, water-based, black liquid makeup (Mehron) 

through a stencil using a Master Airbush system (TCP Global). All of the material 
components (that is, ingredients) of the non-toxic liquid face makeup used were 
FDA approved and were therefore biocompatible. The ingredients were as follows: 
water, propylene glycol, magnesium aluminium silicate, glycerin, cellulose gum, 
Bis-PEG-15 dimethicone/IPDI copolymer, triethanolamine, talc, disodium EDTA, 
phenoxyethanol, iodopropynyl butylcarbamate; and may also contain the following: 
CI 77891 (titanium dioxide), CI 77007 (Ultramarines), CI 77491, CI 77492, CI 77499 
(Iron Oxides), CI 77288 (Chromium Oxide Greens), CI 15850 (Red 7 Lake), CI 15850 
(Red 6 Lake) and CI 19140 (Yellow 5 Lake). As this liquid makeup is water-based, it 
is easily washable. The stencil was generated by custom code written in Python 3.6 
to produce a random non-overlapping speckle pattern (1.5 mm dot size, 50% fill). 
The speckle pattern was laser cut into rubber sheets (thickness, 1/16 foot (1.6 mm); 
width, 10 × 11 cm) using a 120 W CO2 laser cutter (Universal Laser Systems). After 
painting the facial skin, the participant placed their head within view of all of the 
cameras, and the cameras were adjusted to the proper iris (light intake) and focal 
length (zoom) settings to enable the capture of clear images. The participant then 
removed their head from view of the cameras while images of a distortion-correction 
object (flat chequerboard, 13 × 20 square grid, 11.4 mm edge length of each 
square; Supplementary Fig. 9c) and a stereo-calibration object (10-cm-diameter 
cylindrical object, with ordered pattern of 3 mm square dots with 10 mm spacing; 
Supplementary Fig. 9d) were acquired using adjusted camera settings. This step 
enabled characterization of calibration errors (0.1 mm r.m.s. error; Supplementary 
Figs. 10 and 11). Null strain tests were used as a control and established that errors 
from the entire 3D-DIC data collection process were at least one order of magnitude 
lower than the strains measured from almost all facial deformations (Supplementary 
Fig. 12). Images from three cameras were then acquired of the participant’s face as 
they were instructed to perform different facial motions.

After image collection, all of the images were edited in Adobe Photoshop 
CC 2019 to increase the contrast and clarity of the speckle pattern on the face. 
First, tonal range and colour balance was adjusted using the ‘Levels’ adjustment 
(greyscale bits 70 to 255 were retained, with gamma level of 0.7). Then, a 
‘Despeckle’ filter was applied as a low-pass filter to decrease the noise in the image.

All resultant images were processed using DIC methodology to create 3D 
models of the face from 2D images. A MATLAB-based open-source software, 
MultiDIC40, was used for DIC processing and skin-strain calculations. MultiDIC 
processing consisted of the following steps: (1) distortion correction (to determine 
each camera’s radial and tangential distortion, skew and focal length parameters), 
(2) stereo calibration (to determine reconstruction of 3D point locations from 
2D images of those points), (3) 2D-DIC (analysis of speckle images to determine 
spatiotemporal correlation coefficients and point cloud) using NCorr107,108, (4) 
3D-DIC (reconstruction of 3D points and surfaces) and (5) post-processing 
(determination of surface strains and rigid body motions).

Custom-written MATLAB scripts were implemented to interface with 
MultiDIC to extract local spatiotemporal strain values and correlation coefficients 
from the region of the face over which the sensor was placed. After selecting a 
point on a 3D strain map from MultiDIC’s step 4 results and saving the coordinates 
as a variable, one such script can then plot the calculated values for all of the faces 
within a specified radius of this point and with a correlation coefficient of less 
than the specified maximum (0.3 for all trials reported in this study). All figure 
graphs relating to spatiotemporal strain data were created by running this script 
on a point selected in the centre of the area of one of the cFaCES sensing elements. 
Using the resultant strain graphs for 16 different motions (11 at the cheek, 5 at 
the temple), two regions of interest (one on the cheek, one on the temple) were 
identified for placement of the cFaCES onto the face. Strain values were also used 
to cross-validate sensor functionality and estimate the contribution of the surface 
strain to the sensor’s voltage output. All code can be made available on request. 
This procedure was repeated at the temple and cheek of two healthy individuals 
and a patient with ALS.

Facial motion capture with the cFaCES. To measure the voltage output of the 
cFaCES during different facial motions, the sensor was placed onto the temple 
or the cheek of the participant at a location that showed moderate strain values 
during all of the motions, on the basis of DIC trials conducted on that participant. 
The sensor was not placed in areas of large deformation, such as the corner of 
the lips or corner of the eye, owing to an increased probability of sensor breakage 
and/or impediment to normal facial motions. For the temple, this was below the 
eyebrow and halfway to the hairline. For the cheek, this was in the middle of the 
cheek, directly under the outer edge of the eye and in line with the bottom of the 
nose. The sensor was fixed to the face using 3M Tegaderm tape and contact of the 
back of the sensor with the skin was achieved by applying a thin layer of deionized 
water to the back of the sensor before lamination. The sensor was connected by 
an anisotropic conductive film cable, printed circuit board and 22 American wire 
gauge wire to a DAQ system (NI PXIe-4464 in PXIe-1071 chassis) with input 
impedance 1 MΩ || 265 pF. The DAQ system was set up with a software filter 
to remove 60 Hz noise and data were recorded and saved as text files. Unlike 
electromyography-based systems, which suffer from high variability with humidity 
and temperature due to resultant changes in skin capacitance109,110, cFaCES requires 
only a one-time calibration, such that removing and re-applying the device does 
not require re-calibration.
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Real-time detection and classification of facial motions. For demonstration of 
real-time detection and classification of facial motions, the sensor voltage was 
fed into a custom-designed circuit (Supplementary Fig. 126) for amplification, 
filtering, and analogue-to-digital conversion. The 10-bit digital signal was sent 
to a Raspberry Pi 3 B+. Custom Python 3.6 code was written to read the stream 
of data from the sensor and classify detected motions to their appropriate label. 
The classification model is a kNN–DTW algorithm, utilizing the Python fastdtw 
library62. Label assignment and model set-up (such as setting number of nearest 
neighbours, warping radius) and training were performed once per participant 
before RTD was conducted.

Ethics oversight. All procedures in the tests in healthy individuals and patients 
with ALS were in accordance with the experimental protocol approved by the 
Committee on the Use of Humans as Experimental Subjects of the Massachusetts 
Institute of Technology (COUHES, no. 1809531633). The participants gave 
informed consent.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data supporting the results in this study are available within the paper and 
its Supplementary Information. The raw patient data are available from the 
corresponding author, subject to approval from the Institutional Review Board of 
the Massachusetts Institute of Technology.

Code availability
Code used for addressing and capturing images from the cameras for 3D-DIC  
is available at GitHub (https://github.com/ConformableDecoders/PT-Grey- 
Image-Acquisition). Code used for 3D-DIC analysis is available at GitHub (https://
github.com/MultiDIC/MultiDIC). Code used for RTD of facial deformations is 
available at GitHub (https://github.com/ConformableDecoders/cFaCES_RTD).
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Population characteristics ALS Subject 1: age 65, gender F, diagnosed with amyotrophic lateral sclerosis 3.5 years prior to testing 
ALS Subject 2: age 46, gender M, diagnosed with amyotrophic lateral sclerosis 2.5 years prior to testing 
Healthy Subject 1: age 38, gender M, no relevant health conditions 
Healthy Subject 2: age 21, gender F, no relevant health conditions 
Healthy Subject 3: age 22, gender F, no relevant health conditions 
Healthy Subject 4: age 33, gender F, no relevant health conditions 
Healthy Subject 5: age 34, gender M, no relevant health conditions

Recruitment Subjects with mid-stage ALS were recruited via consultation with a medical doctor in the Greater Boston area.  
Healthy and ALS subjects were recruited to represent a variety of ages, genders and cultural backgrounds.

Ethics oversight All procedures in the healthy and ALS subject tests were performed in accordance with the experimental protocol approved 
by the Committee on the Use of Humans as Experimental Subjects of the Massachusetts Institute of Technology (COUHES # 
1809531633). The participants gave informed consent.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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